- /*
- * @(#)Double.java 1.82 03/01/23
- *
- * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.lang;
-
- /**
- * The <code>Double</code> class wraps a value of the primitive type
- * <code>double</code> in an object. An object of type
- * <code>Double</code> contains a single field whose type is
- * <code>double</code>.
- * <p>
- * In addition, this class provides several methods for converting a
- * <code>double</code> to a <code>String</code> and a
- * <code>String</code> to a <code>double</code>, as well as other
- * constants and methods useful when dealing with a
- * <code>double</code>.
- *
- * @author Lee Boynton
- * @author Arthur van Hoff
- * @version 1.82, 01/23/03
- * @since JDK1.0
- */
- public final class Double extends Number implements Comparable {
- /**
- * A constant holding the positive infinity of type
- * <code>double</code>. It is equal to the value returned by
- * <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>.
- */
- public static final double POSITIVE_INFINITY = 1.0 / 0.0;
-
- /**
- * A constant holding the negative infinity of type
- * <code>double</code>. It is equal to the value returned by
- * <code>Double.longBitsToDouble(0xfff0000000000000L)</code>.
- */
- public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
-
- /**
- * A constant holding a Not-a-Number (NaN) value of type
- * <code>double</code>. It is equivalent to the value returned by
- * <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>.
- */
- public static final double NaN = 0.0d / 0.0;
-
- /**
- * A constant holding the largest positive finite value of type
- * <code>double</code>, (2-2<sup>-52</sup>)·2<sup>1023</sup>.
- * It is equal to the value returned by:
- * <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>.
- */
- public static final double MAX_VALUE = 1.7976931348623157e+308;
-
- /**
- * A constant holding the smallest positive nonzero value of type
- * <code>double</code>, 2<sup>-1074</sup>. It is equal to the
- * value returned by <code>Double.longBitsToDouble(0x1L)</code>.
- */
- public static final double MIN_VALUE = 4.9e-324;
-
- /**
- * The <code>Class</code> instance representing the primitive type
- * <code>double</code>.
- *
- * @since JDK1.1
- */
- public static final Class TYPE = Class.getPrimitiveClass("double");
-
- /**
- * Returns a string representation of the <code>double</code>
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "<code>NaN</code>".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '<code>-</code>'
- * (<code>'\u002D'</code>); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * <code>"Infinity"</code> thus, positive infinity produces the result
- * <code>"Infinity"</code> and negative infinity produces the result
- * <code>"-Infinity"</code>.
- *
- * <li>If <i>m</i> is zero, it is represented by the characters
- * <code>"0.0"</code> thus, negative zero produces the result
- * <code>"-0.0"</code> and positive zero produces the result
- * <code>"0.0"</code>.
- *
- * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
- * than 10<sup>7</sup>, then it is represented as the integer part of
- * <i>m</i>, in decimal form with no leading zeroes, followed by
- * '<code>.</code>' (<code>'\u002E'</code>), followed by one or
- * more decimal digits representing the fractional part of <i>m</i>.
- *
- * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in so-called
- * "computerized scientific notation." Let <i>n</i> be the unique
- * integer such that 10<sup><i>n</i></sup> <= <i>m</i> <
- * 10<sup><i>n</i>+1</sup> then let <i>a</i> be the
- * mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 <= <i>a</i> < 10. The
- * magnitude is then represented as the integer part of <i>a</i>,
- * as a single decimal digit, followed by '<code>.</code>'
- * (<code>'\u002E'</code>), followed by decimal digits
- * representing the fractional part of <i>a</i>, followed by the
- * letter '<code>E</code>' (<code>'\u0045'</code>), followed
- * by a representation of <i>n</i> as a decimal integer, as
- * produced by the method {@link Integer#toString(int)}.
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit to represent
- * the fractional part, and beyond that as many, but only as many, more
- * digits as are needed to uniquely distinguish the argument value from
- * adjacent values of type <code>double</code>. That is, suppose that
- * <i>x</i> is the exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero argument
- * <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest
- * to <i>x</i> or if two <code>double</code> values are equally close
- * to <i>x</i>, then <i>d</i> must be one of them and the least
- * significant bit of the significand of <i>d</i> must be <code>0</code>.
- * <p>
- * To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param d the <code>double</code> to be converted.
- * @return a string representation of the argument.
- */
- public static String toString(double d) {
- return new FloatingDecimal(d).toJavaFormatString();
- }
-
- /**
- * Returns a <code>Double</code> object holding the
- * <code>double</code> value represented by the argument string
- * <code>s</code>.
- * <p>
- * If <code>s</code> is <code>null</code>, then a
- * <code>NullPointerException</code> is thrown.
- * <p>
- * Leading and trailing whitespace characters in <code>s</code>
- * are ignored. The rest of <code>s</code> should constitute a
- * <i>FloatValue</i> as described by the lexical rule:
- * <blockquote><i>
- * <dl>
- * <dt>FloatValue:
- * <dd><i>Sign<sub>opt</sub></i> <code>NaN</code>
- * <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code>
- * <dd>Sign<sub>opt</sub> FloatingPointLiteral
- * </dl>
- * </i></blockquote>
- * where <i>Sign</i> and <i>FloatingPointLiteral</i> are as
- * defined in
- * <a href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#230798">§3.10.2</a>
- * of the <a href="http://java.sun.com/docs/books/jls/html/">Java
- * Language Specification</a>. If <code>s</code> does not have the
- * form of a <i>FloatValue</i>, then a <code>NumberFormatException</code>
- * is thrown. Otherwise, <code>s</code> is regarded as
- * representing an exact decimal value in the usual "computerized
- * scientific notation"; this exact decimal value is then
- * conceptually converted to an "infinitely precise" binary value
- * that is then rounded to type <code>double</code> by the usual
- * round-to-nearest rule of IEEE 754 floating-point arithmetic,
- * which includes preserving the sign of a zero value. Finally, a
- * <code>Double</code> object representing this
- * <code>double</code> value is returned.
- * <p>
- * To interpret localized string representations of a
- * floating-point value, use subclasses of {@link
- * java.text.NumberFormat}.
- *
- * <p>Note that trailing format specifiers, specifiers that
- * determine the type of a floating-point literal
- * (<code>1.0f</code> is a <code>float</code> value;
- * <code>1.0d</code> is a <code>double</code> value), do
- * <em>not</em> influence the results of this method. In other
- * words, the numerical value of the input string is converted
- * directly to the target floating-point type. The two-step
- * sequence of conversions, string to <code>float</code> followed
- * by <code>float</code> to <code>double</code>, is <em>not</em>
- * equivalent to converting a string directly to
- * <code>double</code>. For example, the <code>float</code>
- * literal <code>0.1f</code> is equal to the <code>double</code>
- * value <code>0.10000000149011612</code> the <code>float</code>
- * literal <code>0.1f</code> represents a different numerical
- * value than the <code>double</code> literal
- * <code>0.1</code>. (The numerical value 0.1 cannot be exactly
- * represented in a binary floating-point number.)
- *
- * @param s the string to be parsed.
- * @return a <code>Double</code> object holding the value
- * represented by the <code>String</code> argument.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- */
- public static Double valueOf(String s) throws NumberFormatException {
- return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
- }
-
- /**
- * Returns a new <code>double</code> initialized to the value
- * represented by the specified <code>String</code>, as performed
- * by the <code>valueOf</code> method of class
- * <code>Double</code>.
- *
- * @param s the string to be parsed.
- * @return the <code>double</code> value represented by the string
- * argument.
- * @exception NumberFormatException if the string does not contain
- * a parsable <code>double</code>.
- * @see java.lang.Double#valueOf(String)
- * @since 1.2
- */
- public static double parseDouble(String s) throws NumberFormatException {
- return FloatingDecimal.readJavaFormatString(s).doubleValue();
- }
-
- /**
- * Returns <code>true</code> if the specified number is a
- * Not-a-Number (NaN) value, <code>false</code> otherwise.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the value of the argument is NaN;
- * <code>false</code> otherwise.
- */
- static public boolean isNaN(double v) {
- return (v != v);
- }
-
- /**
- * Returns <code>true</code> if the specified number is infinitely
- * large in magnitude, <code>false</code> otherwise.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the value of the argument is positive
- * infinity or negative infinity; <code>false</code> otherwise.
- */
- static public boolean isInfinite(double v) {
- return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
- }
-
- /**
- * The value of the Double.
- *
- * @serial
- */
- private double value;
-
- /**
- * Constructs a newly allocated <code>Double</code> object that
- * represents the primitive <code>double</code> argument.
- *
- * @param value the value to be represented by the <code>Double</code>.
- */
- public Double(double value) {
- this.value = value;
- }
-
- /**
- * Constructs a newly allocated <code>Double</code> object that
- * represents the floating-point value of type <code>double</code>
- * represented by the string. The string is converted to a
- * <code>double</code> value as if by the <code>valueOf</code> method.
- *
- * @param s a string to be converted to a <code>Double</code>.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- * @see java.lang.Double#valueOf(java.lang.String)
- */
- public Double(String s) throws NumberFormatException {
- // REMIND: this is inefficient
- this(valueOf(s).doubleValue());
- }
-
- /**
- * Returns <code>true</code> if this <code>Double</code> value is
- * a Not-a-Number (NaN), <code>false</code> otherwise.
- *
- * @return <code>true</code> if the value represented by this object is
- * NaN; <code>false</code> otherwise.
- */
- public boolean isNaN() {
- return isNaN(value);
- }
-
- /**
- * Returns <code>true</code> if this <code>Double</code> value is
- * infinitely large in magnitude, <code>false</code> otherwise.
- *
- * @return <code>true</code> if the value represented by this object is
- * positive infinity or negative infinity;
- * <code>false</code> otherwise.
- */
- public boolean isInfinite() {
- return isInfinite(value);
- }
-
- /**
- * Returns a string representation of this <code>Double</code> object.
- * The primitive <code>double</code> value represented by this
- * object is converted to a string exactly as if by the method
- * <code>toString</code> of one argument.
- *
- * @return a <code>String</code> representation of this object.
- * @see java.lang.Double#toString(double)
- */
- public String toString() {
- return String.valueOf(value);
- }
-
- /**
- * Returns the value of this <code>Double</code> as a <code>byte</code> (by
- * casting to a <code>byte</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>byte</code>
- * @since JDK1.1
- */
- public byte byteValue() {
- return (byte)value;
- }
-
- /**
- * Returns the value of this <code>Double</code> as a
- * <code>short</code> (by casting to a <code>short</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>short</code>
- * @since JDK1.1
- */
- public short shortValue() {
- return (short)value;
- }
-
- /**
- * Returns the value of this <code>Double</code> as an
- * <code>int</code> (by casting to type <code>int</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>int</code>
- */
- public int intValue() {
- return (int)value;
- }
-
- /**
- * Returns the value of this <code>Double</code> as a
- * <code>long</code> (by casting to type <code>long</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>long</code>
- */
- public long longValue() {
- return (long)value;
- }
-
- /**
- * Returns the <code>float</code> value of this
- * <code>Double</code> object.
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>float</code>
- * @since JDK1.0
- */
- public float floatValue() {
- return (float)value;
- }
-
- /**
- * Returns the <code>double</code> value of this
- * <code>Double</code> object.
- *
- * @return the <code>double</code> value represented by this object
- */
- public double doubleValue() {
- return (double)value;
- }
-
- /**
- * Returns a hash code for this <code>Double</code> object. The
- * result is the exclusive OR of the two halves of the
- * <code>long</code> integer bit representation, exactly as
- * produced by the method {@link #doubleToLongBits(double)}, of
- * the primitive <code>double</code> value represented by this
- * <code>Double</code> object. That is, the hash code is the value
- * of the expression:
- * <blockquote><pre>
- * (int)(v^(v>>>32))
- * </pre></blockquote>
- * where <code>v</code> is defined by:
- * <blockquote><pre>
- * long v = Double.doubleToLongBits(this.doubleValue());
- * </pre></blockquote>
- *
- * @return a <code>hash code</code> value for this object.
- */
- public int hashCode() {
- long bits = doubleToLongBits(value);
- return (int)(bits ^ (bits >>> 32));
- }
-
- /**
- * Compares this object against the specified object. The result
- * is <code>true</code> if and only if the argument is not
- * <code>null</code> and is a <code>Double</code> object that
- * represents a <code>double</code> that has the same value as the
- * <code>double</code> represented by this object. For this
- * purpose, two <code>double</code> values are considered to be
- * the same if and only if the method {@link
- * #doubleToLongBits(double)} returns the identical
- * <code>long</code> value when applied to each.
- * <p>
- * Note that in most cases, for two instances of class
- * <code>Double</code>, <code>d1</code> and <code>d2</code>, the
- * value of <code>d1.equals(d2)</code> is <code>true</code> if and
- * only if
- * <blockquote><pre>
- * d1.doubleValue() == d2.doubleValue()
- * </pre></blockquote>
- * <p>
- * also has the value <code>true</code>. However, there are two
- * exceptions:
- * <ul>
- * <li>If <code>d1</code> and <code>d2</code> both represent
- * <code>Double.NaN</code>, then the <code>equals</code> method
- * returns <code>true</code>, even though
- * <code>Double.NaN==Double.NaN</code> has the value
- * <code>false</code>.
- * <li>If <code>d1</code> represents <code>+0.0</code> while
- * <code>d2</code> represents <code>-0.0</code>, or vice versa,
- * the <code>equal</code> test has the value <code>false</code>,
- * even though <code>+0.0==-0.0</code> has the value <code>true</code>.
- * </ul>
- * This definition allows hash tables to operate properly.
- * @param obj the object to compare with.
- * @return <code>true</code> if the objects are the same;
- * <code>false</code> otherwise.
- * @see java.lang.Double#doubleToLongBits(double)
- */
- public boolean equals(Object obj) {
- return (obj instanceof Double)
- && (doubleToLongBits(((Double)obj).value) ==
- doubleToLongBits(value));
- }
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout.
- * <p>
- * Bit 63 (the bit that is selected by the mask
- * <code>0x8000000000000000L</code>) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * <code>0x000fffffffffffffL</code>) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- * <p>
- * If the argument is positive infinity, the result is
- * <code>0x7ff0000000000000L</code>.
- * <p>
- * If the argument is negative infinity, the result is
- * <code>0xfff0000000000000L</code>.
- * <p>
- * If the argument is NaN, the result is
- * <code>0x7ff8000000000000L</code>.
- * <p>
- * In all cases, the result is a <code>long</code> integer that, when
- * given to the {@link #longBitsToDouble(long)} method, will produce a
- * floating-point value the same as the argument to
- * <code>doubleToLongBits</code> (except all NaN values are
- * collapsed to a single "canonical" NaN value).
- *
- * @param value a <code>double</code> precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native long doubleToLongBits(double value);
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout, preserving Not-a-Number (NaN) values.
- * <p>
- * Bit 63 (the bit that is selected by the mask
- * <code>0x8000000000000000L</code>) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * <code>0x000fffffffffffffL</code>) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- * <p>
- * If the argument is positive infinity, the result is
- * <code>0x7ff0000000000000L</code>.
- * <p>
- * If the argument is negative infinity, the result is
- * <code>0xfff0000000000000L</code>.
- * <p>
- * If the argument is NaN, the result is the <code>long</code>
- * integer representing the actual NaN value. Unlike the
- * <code>doubleToLongBits</code> method,
- * <code>doubleToRawLongBits</code> does not collapse all the bit
- * patterns encoding a NaN to a single "canonical" NaN
- * value.
- * <p>
- * In all cases, the result is a <code>long</code> integer that,
- * when given to the {@link #longBitsToDouble(long)} method, will
- * produce a floating-point value the same as the argument to
- * <code>doubleToRawLongBits</code>.
- *
- * @param value a <code>double</code> precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native long doubleToRawLongBits(double value);
-
- /**
- * Returns the <code>double</code> value corresponding to a given
- * bit representation.
- * The argument is considered to be a representation of a
- * floating-point value according to the IEEE 754 floating-point
- * "double format" bit layout.
- * <p>
- * If the argument is <code>0x7ff0000000000000L</code>, the result
- * is positive infinity.
- * <p>
- * If the argument is <code>0xfff0000000000000L</code>, the result
- * is negative infinity.
- * <p>
- * If the argument is any value in the range
- * <code>0x7ff0000000000001L</code> through
- * <code>0x7fffffffffffffffL</code> or in the range
- * <code>0xfff0000000000001L</code> through
- * <code>0xffffffffffffffffL</code>, the result is a NaN. No IEEE
- * 754 floating-point operation provided by Java can distinguish
- * between two NaN values of the same type with different bit
- * patterns. Distinct values of NaN are only distinguishable by
- * use of the <code>Double.doubleToRawLongBits</code> method.
- * <p>
- * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
- * values that can be computed from the argument:
- * <blockquote><pre>
- * int s = ((bits >> 63) == 0) ? 1 : -1;
- * int e = (int)((bits >> 52) & 0x7ffL);
- * long m = (e == 0) ?
- * (bits & 0xfffffffffffffL) << 1 :
- * (bits & 0xfffffffffffffL) | 0x10000000000000L;
- * </pre></blockquote>
- * Then the floating-point result equals the value of the mathematical
- * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-1075</sup>.
- *<p>
- * Note that this method may not be able to return a
- * <code>double</code> NaN with exactly same bit pattern as the
- * <code>long</code> argument. IEEE 754 distinguishes between two
- * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
- * differences between the two kinds of NaN are generally not
- * visible in Java. Arithmetic operations on signaling NaNs turn
- * them into quiet NaNs with a different, but often similar, bit
- * pattern. However, on some processors merely copying a
- * signaling NaN also performs that conversion. In particular,
- * copying a signaling NaN to return it to the calling method
- * may perform this conversion. So <code>longBitsToDouble</code>
- * may not be able to return a <code>double</code> with a
- * signaling NaN bit pattern. Consequently, for some
- * <code>long</code> values,
- * <code>doubleToRawLongBits(longBitsToDouble(start))</code> may
- * <i>not</i> equal <code>start</code>. Moreover, which
- * particular bit patterns represent signaling NaNs is platform
- * dependent; although all NaN bit patterns, quiet or signaling,
- * must be in the NaN range identified above.
- *
- * @param bits any <code>long</code> integer.
- * @return the <code>double</code> floating-point value with the same
- * bit pattern.
- */
- public static native double longBitsToDouble(long bits);
-
- /**
- * Compares two <code>Double</code> objects numerically. There
- * are two ways in which comparisons performed by this method
- * differ from those performed by the Java language numerical
- * comparison operators (<code><, <=, ==, >= ></code>)
- * when applied to primitive <code>double</code> values:
- * <ul><li>
- * <code>Double.NaN</code> is considered by this method
- * to be equal to itself and greater than all other
- * <code>double</code> values (including
- * <code>Double.POSITIVE_INFINITY</code>).
- * <li>
- * <code>0.0d</code> is considered by this method to be greater
- * than <code>-0.0d</code>.
- * </ul>
- * This ensures that <code>Double.compareTo(Object)</code> (which
- * forwards its behavior to this method) obeys the general
- * contract for <code>Comparable.compareTo</code>, and that the
- * <i>natural order</i> on <code>Double</code>s is <i>consistent
- * with equals</i>.
- *
- * @param anotherDouble the <code>Double</code> to be compared.
- * @return the value <code>0</code> if <code>anotherDouble</code> is
- * numerically equal to this <code>Double</code> a value
- * less than <code>0</code> if this <code>Double</code>
- * is numerically less than <code>anotherDouble</code>
- * and a value greater than <code>0</code> if this
- * <code>Double</code> is numerically greater than
- * <code>anotherDouble</code>.
- *
- * @since 1.2
- * @see Comparable#compareTo(Object)
- */
- public int compareTo(Double anotherDouble) {
- return Double.compare(value, anotherDouble.value);
- }
-
- /**
- * Compares this <code>Double</code> object to another object. If
- * the object is a <code>Double</code>, this function behaves like
- * <code>compareTo(Double)</code>. Otherwise, it throws a
- * <code>ClassCastException</code> (as <code>Double</code> objects
- * are comparable only to other <code>Double</code> objects).
- *
- * @param o the <code>Object</code> to be compared.
- * @return the value <code>0</code> if the argument is a
- * <code>Double</code> numerically equal to this
- * <code>Double</code> a value less than <code>0</code>
- * if the argument is a <code>Double</code> numerically
- * greater than this <code>Double</code> and a value
- * greater than <code>0</code> if the argument is a
- * <code>Double</code> numerically less than this
- * <code>Double</code>.
- * @exception <code>ClassCastException</code> if the argument is not a
- * <code>Double</code>.
- * @see java.lang.Comparable
- * @since 1.2
- */
- public int compareTo(Object o) {
- return compareTo((Double)o);
- }
-
- /**
- * Compares the two specified <code>double</code> values. The sign
- * of the integer value returned is the same as that of the
- * integer that would be returned by the call:
- * <pre>
- * new Double(d1).compareTo(new Double(d2))
- * </pre>
- *
- * @param d1 the first <code>double</code> to compare
- * @param d2 the second <code>double</code> to compare
- * @return the value <code>0</code> if <code>d1</code> is
- * numerically equal to <code>d2</code> a value less than
- * <code>0</code> if <code>d1</code> is numerically less than
- * <code>d2</code> and a value greater than <code>0</code>
- * if <code>d1</code> is numerically greater than
- * <code>d2</code>.
- * @since 1.4
- */
- public static int compare(double d1, double d2) {
- if (d1 < d2)
- return -1; // Neither val is NaN, thisVal is smaller
- if (d1 > d2)
- return 1; // Neither val is NaN, thisVal is larger
-
- long thisBits = Double.doubleToLongBits(d1);
- long anotherBits = Double.doubleToLongBits(d2);
-
- return (thisBits == anotherBits ? 0 : // Values are equal
- (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
- 1)); // (0.0, -0.0) or (NaN, !NaN)
- }
-
- /** use serialVersionUID from JDK 1.0.2 for interoperability */
- private static final long serialVersionUID = -9172774392245257468L;
- }