- /*
- * @(#)BreakDictionary.java 1.12 03/01/23
- *
- * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- /*
- * @(#)BreakDictionary.java 1.3 99/04/07
- *
- * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
- * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
- *
- * The original version of this source code and documentation
- * is copyrighted and owned by Taligent, Inc., a wholly-owned
- * subsidiary of IBM. These materials are provided under terms
- * of a License Agreement between Taligent and Sun. This technology
- * is protected by multiple US and International patents.
- *
- * This notice and attribution to Taligent may not be removed.
- * Taligent is a registered trademark of Taligent, Inc.
- */
- package java.text;
-
- import java.io.*;
- import java.util.MissingResourceException;
- import sun.text.CompactByteArray;
- /**
- * This is the class that represents the list of known words used by
- * DictionaryBasedBreakIterator. The conceptual data structure used
- * here is a trie: there is a node hanging off the root node for every
- * letter that can start a word. Each of these nodes has a node hanging
- * off of it for every letter that can be the second letter of a word
- * if this node is the first letter, and so on. The trie is represented
- * as a two-dimensional array that can be treated as a table of state
- * transitions. Indexes are used to compress this array, taking
- * advantage of the fact that this array will always be very sparse.
- */
- class BreakDictionary {
- //=================================================================================
- // testing and debugging
- //=================================================================================
- public static void main(String args[])
- throws FileNotFoundException, UnsupportedEncodingException, IOException {
- String filename = args[0];
-
- BreakDictionary dictionary = new BreakDictionary(new FileInputStream(filename));
-
- String outputFile = "";
- if(args.length >= 2) {
- outputFile = args[1];
- }
- PrintWriter out = null;
- if (outputFile.length() != 0) {
- out = new PrintWriter(new OutputStreamWriter(new FileOutputStream(outputFile), "UnicodeLittle"));
- }
- dictionary.printWordList("", 0, out);
- }
-
- public void printWordList(String partialWord, int state, PrintWriter out)
- throws IOException {
- if (state == -1) {
- System.out.println(partialWord);
- if (out != null) {
- out.println(partialWord);
- }
- }
- else {
- for (int i = 0; i < numCols; i++) {
- if (at(state, i) != 0) {
- printWordList(partialWord + reverseColumnMap[i], at(state, i), out);
- }
- }
- }
- }
-
- /**
- * A map used to go from column numbers to characters. Used only
- * for debugging right now.
- */
- private char[] reverseColumnMap = null;
-
- //=================================================================================
- // data members
- //=================================================================================
-
- /**
- * The version of the dictionary that was read in.
- */
- private static int supportedVersion = 0;
- private int version;
-
- /**
- * Maps from characters to column numbers. The main use of this is to
- * avoid making room in the array for empty columns.
- */
- private CompactByteArray columnMap = null;
-
- /**
- * The number of actual columns in the table
- */
- private int numCols;
-
- /**
- * Columns are organized into groups of 32. This says how many
- * column groups. (We could calculate this, but we store the
- * value to avoid having to repeatedly calculate it.)
- */
- private int numColGroups;
-
- /**
- * The actual compressed state table. Each conceptual row represents
- * a state, and the cells in it contain the row numbers of the states
- * to transition to for each possible letter. 0 is used to indicate
- * an illegal combination of letters (i.e., the error state). The
- * table is compressed by eliminating all the unpopulated (i.e., zero)
- * cells. Multiple conceptual rows can then be doubled up in a single
- * physical row by sliding them up and possibly shifting them to one
- * side or the other so the populated cells don't collide. Indexes
- * are used to identify unpopulated cells and to locate populated cells.
- */
- private short[] table = null;
-
- /**
- * This index maps logical row numbers to physical row numbers
- */
- private short[] rowIndex = null;
-
- /**
- * A bitmap is used to tell which cells in the comceptual table are
- * populated. This array contains all the unique bit combinations
- * in that bitmap. If the table is more than 32 columns wide,
- * successive entries in this array are used for a single row.
- */
- private int[] rowIndexFlags = null;
-
- /**
- * This index maps from a logical row number into the bitmap table above.
- * (This keeps us from storing duplicate bitmap combinations.) Since there
- * are a lot of rows with only one populated cell, instead of wasting space
- * in the bitmap table, we just store a negative number in this index for
- * rows with one populated cell. The absolute value of that number is
- * the column number of the populated cell.
- */
- private short[] rowIndexFlagsIndex = null;
-
- /**
- * For each logical row, this index contains a constant that is added to
- * the logical column number to get the physical column number
- */
- private byte[] rowIndexShifts = null;
-
- //=================================================================================
- // deserialization
- //=================================================================================
-
- public BreakDictionary(InputStream dictionaryStream) throws IOException {
- readDictionaryFile(new DataInputStream(dictionaryStream));
- }
-
- public void readDictionaryFile(DataInputStream in) throws IOException {
- version = in.readInt();
- if (version != supportedVersion) {
- throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
- in.toString(), "");
- }
-
- int l;
-
- // read in the column map (this is serialized in its internal form:
- // an index array followed by a data array)
- l = in.readInt();
- short[] temp = new short[l];
- for (int i = 0; i < temp.length; i++)
- temp[i] = in.readShort();
- l = in.readInt();
- byte[] temp2 = new byte[l];
- for (int i = 0; i < temp2.length; i++)
- temp2[i] = in.readByte();
- columnMap = new CompactByteArray(temp, temp2);
-
- // read in numCols and numColGroups
- numCols = in.readInt();
- numColGroups = in.readInt();
-
- // read in the row-number index
- l = in.readInt();
- rowIndex = new short[l];
- for (int i = 0; i < rowIndex.length; i++)
- rowIndex[i] = in.readShort();
-
- // load in the populated-cells bitmap: index first, then bitmap list
- l = in.readInt();
- rowIndexFlagsIndex = new short[l];
- for (int i = 0; i < rowIndexFlagsIndex.length; i++)
- rowIndexFlagsIndex[i] = in.readShort();
- l = in.readInt();
- rowIndexFlags = new int[l];
- for (int i = 0; i < rowIndexFlags.length; i++)
- rowIndexFlags[i] = in.readInt();
-
- // load in the row-shift index
- l = in.readInt();
- rowIndexShifts = new byte[l];
- for (int i = 0; i < rowIndexShifts.length; i++)
- rowIndexShifts[i] = in.readByte();
-
- // finally, load in the actual state table
- l = in.readInt();
- table = new short[l];
- for (int i = 0; i < table.length; i++)
- table[i] = in.readShort();
-
- // this data structure is only necessary for testing and debugging purposes
- reverseColumnMap = new char[numCols];
- for (char c = 0; c < 0xffff; c++) {
- int col = columnMap.elementAt(c);
- if (col != 0) {
- reverseColumnMap[col] = c;
- }
- }
-
- // close the stream
- in.close();
- }
-
- //=================================================================================
- // access to the words
- //=================================================================================
-
- /**
- * Uses the column map to map the character to a column number, then
- * passes the row and column number to the other version of at()
- * @param row The current state
- * @param ch The character whose column we're interested in
- * @return The new state to transition to
- */
- public final short at(int row, char ch) {
- int col = columnMap.elementAt(ch);
- return at(row, col);
- }
-
- /**
- * Returns the value in the cell with the specified (logical) row and
- * column numbers. In DictionaryBasedBreakIterator, the row number is
- * a state number, the column number is an input, and the return value
- * is the row number of the new state to transition to. (0 is the
- * "error" state, and -1 is the "end of word" state in a dictionary)
- * @param row The row number of the current state
- * @param col The column number of the input character (0 means "not a
- * dictionary character")
- * @return The row number of the new state to transition to
- */
- public final short at(int row, int col) {
- if (cellIsPopulated(row, col)) {
- // we map from logical to physical row number by looking up the
- // mapping in rowIndex; we map from logical column number to
- // physical column number by looking up a shift value for this
- // logical row and offsetting the logical column number by
- // the shift amount. Then we can use internalAt() to actually
- // get the value out of the table.
- return internalAt(rowIndex[row], col + rowIndexShifts[row]);
- }
- else {
- return 0;
- }
- }
-
- /**
- * Given (logical) row and column numbers, returns true if the
- * cell in that position is populated
- */
- private final boolean cellIsPopulated(int row, int col) {
- // look up the entry in the bitmap index for the specified row.
- // If it's a negative number, it's the column number of the only
- // populated cell in the row
- if (rowIndexFlagsIndex[row] < 0) {
- return col == -rowIndexFlagsIndex[row];
- }
-
- // if it's a positive number, it's the offset of an entry in the bitmap
- // list. If the table is more than 32 columns wide, the bitmap is stored
- // successive entries in the bitmap list, so we have to divide the column
- // number by 32 and offset the number we got out of the index by the result.
- // Once we have the appropriate piece of the bitmap, test the appropriate
- // bit and return the result.
- else {
- int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
- return (flags & (1 << (col & 0x1f))) != 0;
- }
- }
-
- /**
- * Implementation of at() when we know the specified cell is populated.
- * @param row The PHYSICAL row number of the cell
- * @param col The PHYSICAL column number of the cell
- * @return The value stored in the cell
- */
- private final short internalAt(int row, int col) {
- // the table is a one-dimensional array, so this just does the math necessary
- // to treat it as a two-dimensional array (we don't just use a two-dimensional
- // array because two-dimensional arrays are inefficient in Java)
- return table[row * numCols + col];
- }
- }
-