- /*
- * @(#)GradientPaintContext.java 1.19 00/02/02
- *
- * Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved.
- *
- * This software is the proprietary information of Sun Microsystems, Inc.
- * Use is subject to license terms.
- *
- */
-
- package java.awt;
-
- import java.awt.image.Raster;
- import java.awt.image.WritableRaster;
- import sun.awt.image.IntegerComponentRaster;
- import java.awt.image.ColorModel;
- import java.awt.image.DirectColorModel;
- import java.awt.geom.Point2D;
- import java.awt.geom.AffineTransform;
- import java.awt.geom.NoninvertibleTransformException;
-
- class GradientPaintContext implements PaintContext {
- static ColorModel xrgbmodel =
- new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
-
- double x1;
- double y1;
- double dx;
- double dy;
- boolean cyclic;
- int interp[];
- Raster saved;
- ColorModel model;
-
- public GradientPaintContext(Point2D p1, Point2D p2, AffineTransform xform,
- Color c1, Color c2, boolean cyclic) {
- // First calculate the distance moved in user space when
- // we move a single unit along the X & Y axes in device space.
- Point2D xvec = new Point2D.Double(1, 0);
- Point2D yvec = new Point2D.Double(0, 1);
- try {
- AffineTransform inverse = xform.createInverse();
- inverse.deltaTransform(xvec, xvec);
- inverse.deltaTransform(yvec, yvec);
- } catch (NoninvertibleTransformException e) {
- xvec.setLocation(0, 0);
- yvec.setLocation(0, 0);
- }
-
- // Now calculate the (square of the) user space distance
- // between the anchor points. This value equals:
- // (UserVec . UserVec)
- double udx = p2.getX() - p1.getX();
- double udy = p2.getY() - p1.getY();
- double ulenSq = udx * udx + udy * udy;
-
- if (ulenSq <= Double.MIN_VALUE) {
- dx = 0;
- dy = 0;
- } else {
- // Now calculate the proportional distance moved along the
- // vector from p1 to p2 when we move a unit along X & Y in
- // device space.
- //
- // The length of the projection of the Device Axis Vector is
- // its dot product with the Unit User Vector:
- // (DevAxisVec . (UserVec / Len(UserVec))
- //
- // The "proportional" length is that length divided again
- // by the length of the User Vector:
- // (DevAxisVec . (UserVec / Len(UserVec))) / Len(UserVec)
- // which simplifies to:
- // ((DevAxisVec . UserVec) / Len(UserVec)) / Len(UserVec)
- // which simplifies to:
- // (DevAxisVec . UserVec) / LenSquared(UserVec)
- dx = (xvec.getX() * udx + xvec.getY() * udy) / ulenSq;
- dy = (yvec.getX() * udx + yvec.getY() * udy) / ulenSq;
-
- if (cyclic) {
- dx = dx % 1.0;
- dy = dy % 1.0;
- } else {
- // We are acyclic
- if (dx < 0) {
- // If we are using the acyclic form below, we need
- // dx to be non-negative for simplicity of scanning
- // across the scan lines for the transition points.
- // To ensure that constraint, we negate the dx/dy
- // values and swap the points and colors.
- Point2D p = p1; p1 = p2; p2 = p;
- Color c = c1; c1 = c2; c2 = c;
- dx = -dx;
- dy = -dy;
- }
- }
- }
-
- Point2D dp1 = xform.transform(p1, null);
- this.x1 = dp1.getX();
- this.y1 = dp1.getY();
-
- this.cyclic = cyclic;
- int rgb1 = c1.getRGB();
- int rgb2 = c2.getRGB();
- int a1 = (rgb1 >> 24) & 0xff;
- int r1 = (rgb1 >> 16) & 0xff;
- int g1 = (rgb1 >> 8) & 0xff;
- int b1 = (rgb1 ) & 0xff;
- int da = ((rgb2 >> 24) & 0xff) - a1;
- int dr = ((rgb2 >> 16) & 0xff) - r1;
- int dg = ((rgb2 >> 8) & 0xff) - g1;
- int db = ((rgb2 ) & 0xff) - b1;
- if (((rgb1 & rgb2) >>> 24) == 0xff) {
- model = xrgbmodel;
- } else {
- model = ColorModel.getRGBdefault();
- }
- interp = new int[cyclic ? 513 : 257];
- for (int i = 0; i <= 256; i++) {
- float rel = i / 256.0f;
- int rgb =
- (((int) (a1 + da * rel)) << 24) |
- (((int) (r1 + dr * rel)) << 16) |
- (((int) (g1 + dg * rel)) << 8) |
- (((int) (b1 + db * rel)) );
- interp[i] = rgb;
- if (cyclic) {
- interp[512 - i] = rgb;
- }
- }
- }
-
- /**
- * Release the resources allocated for the operation.
- */
- public void dispose() {
- saved = null;
- }
-
- /**
- * Return the ColorModel of the output.
- */
- public ColorModel getColorModel() {
- return model;
- }
-
- /**
- * Return a Raster containing the colors generated for the graphics
- * operation.
- * @param x,y,w,h The area in device space for which colors are
- * generated.
- */
- public Raster getRaster(int x, int y, int w, int h) {
- double rowrel = (x - x1) * dx + (y - y1) * dy;
-
- Raster rast = saved;
- if (rast == null || rast.getWidth() < w || rast.getHeight() < h) {
- rast = getColorModel().createCompatibleWritableRaster(w, h);
- saved = rast;
- }
- IntegerComponentRaster irast = (IntegerComponentRaster) rast;
- int off = irast.getDataOffset(0);
- int adjust = irast.getScanlineStride() - w;
- int[] pixels = irast.getDataStorage();
-
- if (cyclic) {
- cycleFillRaster(pixels, off, adjust, w, h, rowrel, dx, dy);
- } else {
- clipFillRaster(pixels, off, adjust, w, h, rowrel, dx, dy);
- }
-
- return rast;
- }
-
- void cycleFillRaster(int[] pixels, int off, int adjust, int w, int h,
- double rowrel, double dx, double dy) {
- rowrel = rowrel % 2.0;
- int irowrel = ((int) (rowrel * (1 << 30))) << 1;
- int idx = (int) (-dx * (1 << 31));
- int idy = (int) (-dy * (1 << 31));
- while (--h >= 0) {
- int icolrel = irowrel;
- for (int j = w; j > 0; j--) {
- pixels[off++] = interp[icolrel >>> 23];
- icolrel += idx;
- }
-
- off += adjust;
- irowrel += idy;
- }
- }
-
- void clipFillRaster(int[] pixels, int off, int adjust, int w, int h,
- double rowrel, double dx, double dy) {
- while (--h >= 0) {
- double colrel = rowrel;
- int j = w;
- if (colrel <= 0.0) {
- int rgb = interp[0];
- do {
- pixels[off++] = rgb;
- colrel += dx;
- } while (--j > 0 && colrel <= 0.0);
- }
- while (colrel < 1.0 && --j >= 0) {
- pixels[off++] = interp[(int) (colrel * 256)];
- colrel += dx;
- }
- if (j > 0) {
- int rgb = interp[256];
- do {
- pixels[off++] = rgb;
- } while (--j > 0);
- }
-
- off += adjust;
- rowrel += dy;
- }
- }
- }