- /*
- * @(#)Double.java 1.63 00/02/02
- *
- * Copyright 1994-2000 Sun Microsystems, Inc. All Rights Reserved.
- *
- * This software is the proprietary information of Sun Microsystems, Inc.
- * Use is subject to license terms.
- *
- */
-
- package java.lang;
-
- /**
- * The Double class wraps a value of the primitive type
- * <code>double</code> in an object. An object of type
- * <code>Double</code> contains a single field whose type is
- * <code>double</code>.
- * <p>
- * In addition, this class provides several methods for converting a
- * <code>double</code> to a <code>String</code> and a
- * <code>String</code> to a <code>double</code>, as well as other
- * constants and methods useful when dealing with a
- * <code>double</code>.
- *
- * @author Lee Boynton
- * @author Arthur van Hoff
- * @version 1.63, 02/02/00
- * @since JDK1.0
- */
- public final class Double extends Number implements Comparable {
- /**
- * The positive infinity of type <code>double</code>. It is equal to
- * the value returned by
- * <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>.
- */
- public static final double POSITIVE_INFINITY = 1.0 / 0.0;
-
- /**
- * The negative infinity of type <code>double</code>. It is equal to
- * the value returned by
- * <code>Double.longBitsToDouble(0xfff0000000000000L)</code>.
- */
- public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
-
- /**
- * A Not-a-Number (NaN) value of type <code>double</code>. It is equal to
- * the value returned by
- * <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>.
- */
- public static final double NaN = 0.0d / 0.0;
-
- /**
- * The largest positive finite value of type <code>double</code>.
- * It is equal to the returned by:
- * <blockquote><pre>
- * <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>
- * </pre></blockquote>
- */
- public static final double MAX_VALUE = 1.79769313486231570e+308;
-
- /**
- * The smallest positive value of type <code>double</code>. It is
- * equal to the value returned by
- * <code>Double.longBitsToDouble(0x1L)</code>.
- */
- // public static final double MIN_VALUE = 4.94065645841246544e-324;
- public static final double MIN_VALUE = longBitsToDouble(1L);
-
- /**
- * The Class object representing the primitive type double.
- *
- * @since JDK1.1
- */
- public static final Class TYPE = Class.getPrimitiveClass("double");
-
- /**
- * Creates a string representation of the <code>double</code>
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string "NaN".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '<code>-</code>'
- * ('<code>\u002d</code>'); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * <code>"Infinity"</code> thus, positive infinity produces the result
- * <code>"Infinity"</code> and negative infinity produces the result
- * <code>"-Infinity"</code>.
- * <li>If <i>m</i> is zero, it is represented by the characters
- * <code>"0.0"</code> thus, negative zero produces the result
- * <code>"-0.0"</code> and positive zero produces the result
- * <code>"0.0"</code>.
- * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
- * than 10<sup>7</sup>, then it is represented as the integer part of
- * <i>m</i>, in decimal form with no leading zeroes, followed by
- * <code>'.'</code> (<code>\u002E</code>), followed by one or more decimal
- * digits representing the fractional part of <i>m</i>.
- * <li>If <i>m</i> is less than 10<sup>-3</sup> or not less than
- * 10<sup>7</sup>, then it is represented in so-called "computerized
- * scientific notation." Let <i>n</i> be the unique integer such that
- * 10<sup>n</sup><=<i>m</i><10<sup>n+1</sup> then let <i>a</i> be
- * the mathematically exact quotient of <i>m</i> and 10<sup>n</sup> so
- * that 1<=<i>a</i><10. The magnitude is then represented as the
- * integer part of <i>a</i>, as a single decimal digit, followed
- * by <code>'.'</code> (<code>\u002E</code>), followed by decimal digits
- * representing the fractional part of <i>a</i>, followed by the letter
- * <code>'E'</code> (<code>\u0045</code>), followed by a representation
- * of <i>n</i> as a decimal integer, as produced by the method
- * {@link Integer#toString(int)}.
- * </ul><p>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit to represent
- * the fractional part, and beyond that as many, but only as many, more
- * digits as are needed to uniquely distinguish the argument value from
- * adjacent values of type <code>double</code>. That is, suppose that
- * <i>x</i> is the exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero argument
- * <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest
- * to <i>x</i> or if two <code>double</code> values are equally close
- * to <i>x</i>, then <i>d</i> must be one of them and the least
- * significant bit of the significand of <i>d</i> must be <code>0</code>.
- *
- * @param d the <code>double</code> to be converted.
- * @return a string representation of the argument.
- */
- public static String toString(double d){
- return new FloatingDecimal(d).toJavaFormatString();
- }
-
- /**
- * Returns a new <code>Double</code> object initialized to the value
- * represented by the specified string. The string <code>s</code> is
- * interpreted as the representation of a floating-point value and a
- * <code>Double</code> object representing that value is created and
- * returned.
- * <p>
- * If <code>s</code> is <code>null</code>, then a
- * <code>NullPointerException</code> is thrown.
- * <p>
- * Leading and trailing whitespace characters in s are ignored. The rest
- * of <code>s</code> should constitute a <i>FloatValue</i> as described
- * by the lexical rule:
- * <blockquote><pre><i>
- * FloatValue:
- *
- * Sign<sub>opt</sub> FloatingPointLiteral
- * </i></pre></blockquote>
- * where <i>Sign</i> and <i>FloatingPointLiteral</i> are as defined in
- * ?3.10.2 of the <a href="http://java.sun.com/docs/books/jls/html/">Java
- * Language Specification</a>. If it does not have the form of a
- * <i>FloatValue</i>, then a <code>NumberFormatException</code> is
- * thrown. Otherwise, it is regarded as representing an exact decimal
- * value in the usual "computerized scientific notation"; this exact
- * decimal value is then conceptually converted to an "infinitely
- * precise" binary value that is then rounded to type <code>double</code>
- * by the usual round-to-nearest rule of IEEE 754 floating-point
- * arithmetic. Finally, a new object of class <code>Double</code> is
- * created to represent the <code>double</code> value.
- *
- * @param s the string to be parsed.
- * @return a newly constructed <code>Double</code> initialized to the
- * value represented by the string argument.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- */
- public static Double valueOf(String s) throws NumberFormatException {
- return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
- }
-
- /**
- * Returns a new double initialized to the value represented by the
- * specified <code>String</code>, as performed by the <code>valueOf</code>
- * method of class <code>Double</code>.
- *
- * @param s the string to be parsed.
- * @return the double value represented by the string argument.
- * @exception NumberFormatException if the string does not contain a
- * parsable double.
- * @see java.lang.Double#valueOf(String)
- * @since 1.2
- */
- public static double parseDouble(String s) throws NumberFormatException {
- return FloatingDecimal.readJavaFormatString(s).doubleValue();
- }
-
- /**
- * Returns true if the specified number is the special Not-a-Number (NaN)
- * value.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the value of the argument is NaN;
- * <code>false</code> otherwise.
- */
- static public boolean isNaN(double v) {
- return (v != v);
- }
-
- /**
- * Returns true if the specified number is infinitely large in magnitude.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the value of the argument is positive
- * infinity or negative infinity; <code>false</code> otherwise.
- */
- static public boolean isInfinite(double v) {
- return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
- }
-
- /**
- * The value of the Double.
- *
- * @serial
- */
- private double value;
-
- /**
- * Constructs a newly allocated <code>Double</code> object that
- * represents the primitive <code>double</code> argument.
- *
- * @param value the value to be represented by the <code>Double</code>.
- */
- public Double(double value) {
- this.value = value;
- }
-
- /**
- * Constructs a newly allocated <code>Double</code> object that
- * represents the floating- point value of type <code>double</code>
- * represented by the string. The string is converted to a
- * <code>double</code> value as if by the <code>valueOf</code> method.
- *
- * @param s a string to be converted to a <code>Double</code>.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- * @see java.lang.Double#valueOf(java.lang.String)
- */
- public Double(String s) throws NumberFormatException {
- // REMIND: this is inefficient
- this(valueOf(s).doubleValue());
- }
-
- /**
- * Returns true if this Double value is the special Not-a-Number (NaN)
- * value.
- *
- * @return <code>true</code> if the value represented by this object is
- * NaN; <code>false</code> otherwise.
- */
- public boolean isNaN() {
- return isNaN(value);
- }
-
- /**
- * Returns true if this Double value is infinitely large in magnitude.
- *
- * @return <code>true</code> if the value represented by this object is
- * positive infinity or negative infinity;
- * <code>false</code> otherwise.
- */
- public boolean isInfinite() {
- return isInfinite(value);
- }
-
- /**
- * Returns a String representation of this Double object.
- * The primitive <code>double</code> value represented by this
- * object is converted to a string exactly as if by the method
- * <code>toString</code> of one argument.
- *
- * @return a <code>String</code> representation of this object.
- * @see java.lang.Double#toString(double)
- */
- public String toString() {
- return String.valueOf(value);
- }
-
- /**
- * Returns the value of this Double as a byte (by casting to a byte).
- *
- * @since JDK1.1
- */
- public byte byteValue() {
- return (byte)value;
- }
-
- /**
- * Returns the value of this Double as a short (by casting to a short).
- *
- * @since JDK1.1
- */
- public short shortValue() {
- return (short)value;
- }
-
- /**
- * Returns the integer value of this Double (by casting to an int).
- *
- * @return the <code>double</code> value represented by this object is
- * converted to type <code>int</code> and the result of the
- * conversion is returned.
- */
- public int intValue() {
- return (int)value;
- }
-
- /**
- * Returns the long value of this Double (by casting to a long).
- *
- * @return the <code>double</code> value represented by this object is
- * converted to type <code>long</code> and the result of the
- * conversion is returned.
- */
- public long longValue() {
- return (long)value;
- }
-
- /**
- * Returns the float value of this Double.
- *
- * @return the <code>double</code> value represented by this object is
- * converted to type <code>float</code> and the result of the
- * conversion is returned.
- * @since JDK1.0
- */
- public float floatValue() {
- return (float)value;
- }
-
- /**
- * Returns the double value of this Double.
- *
- * @return the <code>double</code> value represented by this object.
- */
- public double doubleValue() {
- return (double)value;
- }
-
- /**
- * Returns a hashcode for this <code>Double</code> object. The result
- * is the exclusive OR of the two halves of the long integer bit
- * representation, exactly as produced by the method
- * {@link #doubleToLongBits(double)}, of the primitive
- * <code>double</code> value represented by this <code>Double</code>
- * object. That is, the hashcode is the value of the expression:
- * <blockquote><pre>
- * (int)(v^(v>>>32))
- * </pre></blockquote>
- * where <code>v</code> is defined by:
- * <blockquote><pre>
- * long v = Double.doubleToLongBits(this.doubleValue());
- * </pre></blockquote>
- *
- * @return a <code>hash code</code> value for this object.
- */
- public int hashCode() {
- long bits = doubleToLongBits(value);
- return (int)(bits ^ (bits >>> 32));
- }
-
- /**
- * Compares this object against the specified object.
- * The result is <code>true</code> if and only if the argument is
- * not <code>null</code> and is a <code>Double</code> object that
- * represents a double that has the identical bit pattern to the bit
- * pattern of the double represented by this object. For this purpose,
- * two <code>double</code> values are considered to be the same if and
- * only if the method {@link #doubleToLongBits(double)} returns the same
- * long value when applied to each.
- * <p>
- * Note that in most cases, for two instances of class
- * <code>Double</code>, <code>d1</code> and <code>d2</code>, the
- * value of <code>d1.equals(d2)</code> is <code>true</code> if and
- * only if
- * <blockquote><pre>
- * d1.doubleValue() == d2.doubleValue()
- * </pre></blockquote>
- * <p>
- * also has the value <code>true</code>. However, there are two
- * exceptions:
- * <ul>
- * <li>If <code>d1</code> and <code>d2</code> both represent
- * <code>Double.NaN</code>, then the <code>equals</code> method
- * returns <code>true</code>, even though
- * <code>Double.NaN==Double.NaN</code> has the value
- * <code>false</code>.
- * <li>If <code>d1</code> represents <code>+0.0</code> while
- * <code>d2</code> represents <code>-0.0</code>, or vice versa,
- * the <code>equal</code> test has the value <code>false</code>,
- * even though <code>+0.0==-0.0</code> has the value <code>true</code>.
- * This allows hashtables to operate properly.
- * </ul>
- *
- * @param obj the object to compare with.
- * @return <code>true</code> if the objects are the same;
- * <code>false</code> otherwise.
- */
- public boolean equals(Object obj) {
- return (obj instanceof Double)
- && (doubleToLongBits(((Double)obj).value) ==
- doubleToLongBits(value));
- }
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout.
- * <p>
- * Bit 63 (the bit that is selected by the mask
- * <code>0x8000000000000000L</code>) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * <code>0x000fffffffffffffL</code>) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- * <p>
- * If the argument is positive infinity, the result is
- * <code>0x7ff0000000000000L</code>.
- * <p>
- * If the argument is negative infinity, the result is
- * <code>0xfff0000000000000L</code>.
- * <p>
- * If the argument is NaN, the result is
- * <code>0x7ff8000000000000L</code>.
- * <p>
- * In all cases, the result is a <code>long</code> integer that, when
- * given to the {@link #longBitsToDouble(long)} method, will produce a
- * floating-point value equal to the argument to
- * <code>doubleToLongBits</code>.
- *
- * @param value a double precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native long doubleToLongBits(double value);
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout.
- * <p>
- * Bit 63 (the bit that is selected by the mask
- * <code>0x8000000000000000L</code>) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * <code>0x000fffffffffffffL</code>) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- * <p>
- * If the argument is positive infinity, the result is
- * <code>0x7ff0000000000000L</code>.
- * <p>
- * If the argument is negative infinity, the result is
- * <code>0xfff0000000000000L</code>.
- * <p>
- * If the argument is NaN, the result is the <code>long</code> integer
- * representing the actual NaN value. Unlike the <code>doubleToLongBits</code>
- * method, <code>doubleToRawLongBits</code> does not collapse NaN values.
- * <p>
- * In all cases, the result is a <code>long</code> integer that, when
- * given to the {@link #longBitsToDouble(long)} method, will produce a
- * floating-point value equal to the argument to
- * <code>doubleToRawLongBits</code>.
- *
- * @param value a double precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native long doubleToRawLongBits(double value);
-
- /**
- * Returns the double-float corresponding to a given bit represention.
- * The argument is considered to be a representation of a
- * floating-point value according to the IEEE 754 floating-point
- * "double precision" bit layout. That floating-point
- * value is returned as the result.
- * <p>
- * If the argument is <code>0x7ff0000000000000L</code>, the result
- * is positive infinity.
- * <p>
- * If the argument is <code>0xfff0000000000000L</code>, the result
- * is negative infinity.
- * <p>
- * If the argument is any value in the range
- * <code>0x7ff0000000000001L</code> through
- * <code>0x7fffffffffffffffL</code> or in the range
- * <code>0xfff0000000000001L</code> through
- * <code>0xffffffffffffffffL</code>, the result is NaN. All IEEE 754
- * NaN values of type <code>double</code> are, in effect, lumped together
- * by the Java programming language into a single value called NaN.
- * Distinct values of NaN are only accessible by use of the
- * <code>Double.doubleToRawLongBits</code> method.
- * <p>
- * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
- * values that can be computed from the argument:
- * <blockquote><pre>
- * int s = ((bits >> 63) == 0) ? 1 : -1;
- * int e = (int)((bits >> 52) & 0x7ffL);
- * long m = (e == 0) ?
- * (bits & 0xfffffffffffffL) << 1 :
- * (bits & 0xfffffffffffffL) | 0x10000000000000L;
- * </pre></blockquote>
- * Then the floating-point result equals the value of the mathematical
- * expression <i>s</i>·<i>m</i>·2<sup>e-1075</sup>.
- *
- * @param bits any <code>long</code> integer.
- * @return the <code>double</code> floating-point value with the same
- * bit pattern.
- */
- public static native double longBitsToDouble(long bits);
-
- /**
- * Compares two Doubles numerically. There are two ways in which
- * comparisons performed by this method differ from those performed
- * by the Java language numerical comparison operators (<code><, <=,
- * ==, >= ></code>) when applied to primitive doubles:
- * <ul><li>
- * <code>Double.NaN</code> is considered by this method to be
- * equal to itself and greater than all other double values
- * (including <code>Double.POSITIVE_INFINITY</code>).
- * <li>
- * <code>0.0d</code> is considered by this method to be greater
- * than <code>-0.0d</code>.
- * </ul>
- * This ensures that Double.compareTo(Object) (which inherits its behavior
- * from this method) obeys the general contract for Comparable.compareTo,
- * and that the <i>natural order</i> on Doubles is <i>total</i>.
- *
- * @param anotherDouble the <code>Double</code> to be compared.
- * @return the value <code>0</code> if <code>anotherDouble</code> is
- * numerically equal to this Double; a value less than
- * <code>0</code> if this Double is numerically less than
- * <code>anotherDouble</code> and a value greater than
- * <code>0</code> if this Double is numerically greater than
- * <code>anotherDouble</code>.
- *
- * @since 1.2
- * @see Comparable#compareTo(Object)
- */
- public int compareTo(Double anotherDouble) {
- double thisVal = value;
- double anotherVal = anotherDouble.value;
-
- if (thisVal < anotherVal)
- return -1; // Neither val is NaN, thisVal is smaller
- if (thisVal > anotherVal)
- return 1; // Neither val is NaN, thisVal is larger
-
- long thisBits = Double.doubleToLongBits(thisVal);
- long anotherBits = Double.doubleToLongBits(anotherVal);
-
- return (thisBits == anotherBits ? 0 : // Values are equal
- (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
- 1)); // (0.0, -0.0) or (NaN, !NaN)
- }
-
- /**
- * Compares this Double to another Object. If the Object is a Double,
- * this function behaves like <code>compareTo(Double)</code>. Otherwise,
- * it throws a <code>ClassCastException</code> (as Doubles are comparable
- * only to other Doubles).
- *
- * @param o the <code>Object</code> to be compared.
- * @return the value <code>0</code> if the argument is a Double
- * numerically equal to this Double; a value less than
- * <code>0</code> if the argument is a Double numerically
- * greater than this Double; and a value greater than
- * <code>0</code> if the argument is a Double numerically
- * less than this Double.
- * @exception <code>ClassCastException</code> if the argument is not a
- * <code>Double</code>.
- * @see java.lang.Comparable
- * @since 1.2
- */
- public int compareTo(Object o) {
- return compareTo((Double)o);
- }
-
- /** use serialVersionUID from JDK 1.0.2 for interoperability */
- private static final long serialVersionUID = -9172774392245257468L;
- }