- /*
- * @(#)Double.java 1.94 04/05/11
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.lang;
-
- import sun.misc.FloatingDecimal;
- import sun.misc.FpUtils;
- import sun.misc.DoubleConsts;
-
- /**
- * The <code>Double</code> class wraps a value of the primitive type
- * <code>double</code> in an object. An object of type
- * <code>Double</code> contains a single field whose type is
- * <code>double</code>.
- * <p>
- * In addition, this class provides several methods for converting a
- * <code>double</code> to a <code>String</code> and a
- * <code>String</code> to a <code>double</code>, as well as other
- * constants and methods useful when dealing with a
- * <code>double</code>.
- *
- * @author Lee Boynton
- * @author Arthur van Hoff
- * @author Joseph D. Darcy
- * @version 1.94, 05/11/04
- * @since JDK1.0
- */
- public final class Double extends Number implements Comparable<Double> {
- /**
- * A constant holding the positive infinity of type
- * <code>double</code>. It is equal to the value returned by
- * <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>.
- */
- public static final double POSITIVE_INFINITY = 1.0 / 0.0;
-
- /**
- * A constant holding the negative infinity of type
- * <code>double</code>. It is equal to the value returned by
- * <code>Double.longBitsToDouble(0xfff0000000000000L)</code>.
- */
- public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
-
- /**
- * A constant holding a Not-a-Number (NaN) value of type
- * <code>double</code>. It is equivalent to the value returned by
- * <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>.
- */
- public static final double NaN = 0.0d / 0.0;
-
- /**
- * A constant holding the largest positive finite value of type
- * <code>double</code>,
- * (2-2<sup>-52</sup>)·2<sup>1023</sup>. It is equal to
- * the hexadecimal floating-point literal
- * <code>0x1.fffffffffffffP+1023</code> and also equal to
- * <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>.
- */
- public static final double MAX_VALUE = 1.7976931348623157e+308; // 0x1.fffffffffffffP+1023
-
- /**
- * A constant holding the smallest positive nonzero value of type
- * <code>double</code>, 2<sup>-1074</sup>. It is equal to the
- * hexadecimal floating-point literal
- * <code>0x0.0000000000001P-1022</code> and also equal to
- * <code>Double.longBitsToDouble(0x1L)</code>.
- */
- public static final double MIN_VALUE = 4.9e-324; // 0x0.0000000000001P-1022
-
- /**
- * The number of bits used to represent a <tt>double</tt> value.
- *
- * @since 1.5
- */
- public static final int SIZE = 64;
-
- /**
- * The <code>Class</code> instance representing the primitive type
- * <code>double</code>.
- *
- * @since JDK1.1
- */
- public static final Class<Double> TYPE = (Class<Double>) Class.getPrimitiveClass("double");
-
- /**
- * Returns a string representation of the <code>double</code>
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "<code>NaN</code>".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '<code>-</code>'
- * (<code>'\u002D'</code>); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * <code>"Infinity"</code> thus, positive infinity produces the result
- * <code>"Infinity"</code> and negative infinity produces the result
- * <code>"-Infinity"</code>.
- *
- * <li>If <i>m</i> is zero, it is represented by the characters
- * <code>"0.0"</code> thus, negative zero produces the result
- * <code>"-0.0"</code> and positive zero produces the result
- * <code>"0.0"</code>.
- *
- * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
- * than 10<sup>7</sup>, then it is represented as the integer part of
- * <i>m</i>, in decimal form with no leading zeroes, followed by
- * '<code>.</code>' (<code>'\u002E'</code>), followed by one or
- * more decimal digits representing the fractional part of <i>m</i>.
- *
- * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in so-called
- * "computerized scientific notation." Let <i>n</i> be the unique
- * integer such that 10<sup><i>n</i></sup> <= <i>m</i> <
- * 10<sup><i>n</i>+1</sup> then let <i>a</i> be the
- * mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 <= <i>a</i> < 10. The
- * magnitude is then represented as the integer part of <i>a</i>,
- * as a single decimal digit, followed by '<code>.</code>'
- * (<code>'\u002E'</code>), followed by decimal digits
- * representing the fractional part of <i>a</i>, followed by the
- * letter '<code>E</code>' (<code>'\u0045'</code>), followed
- * by a representation of <i>n</i> as a decimal integer, as
- * produced by the method {@link Integer#toString(int)}.
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit to represent
- * the fractional part, and beyond that as many, but only as many, more
- * digits as are needed to uniquely distinguish the argument value from
- * adjacent values of type <code>double</code>. That is, suppose that
- * <i>x</i> is the exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero argument
- * <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest
- * to <i>x</i> or if two <code>double</code> values are equally close
- * to <i>x</i>, then <i>d</i> must be one of them and the least
- * significant bit of the significand of <i>d</i> must be <code>0</code>.
- * <p>
- * To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param d the <code>double</code> to be converted.
- * @return a string representation of the argument.
- */
- public static String toString(double d) {
- return new FloatingDecimal(d).toJavaFormatString();
- }
-
- /**
- * Returns a hexadecimal string representation of the
- * <code>double</code> argument. All characters mentioned below
- * are ASCII characters.
- *
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "<code>NaN</code>".
- * <li>Otherwise, the result is a string that represents the sign
- * and magnitude of the argument. If the sign is negative, the
- * first character of the result is '<code>-</code>'
- * (<code>'\u002D'</code>); if the sign is positive, no sign
- * character appears in the result. As for the magnitude <i>m</i>:
- *
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the string
- * <code>"Infinity"</code> thus, positive infinity produces the
- * result <code>"Infinity"</code> and negative infinity produces
- * the result <code>"-Infinity"</code>.
- *
- * <li>If <i>m</i> is zero, it is represented by the string
- * <code>"0x0.0p0"</code> thus, negative zero produces the result
- * <code>"-0x0.0p0"</code> and positive zero produces the result
- * <code>"0x0.0p0"</code>.
- *
- * <li>If <i>m</i> is a <code>double</code> value with a
- * normalized representation, substrings are used to represent the
- * significand and exponent fields. The significand is
- * represented by the characters <code>"0x1."</code>
- * followed by a lowercase hexadecimal representation of the rest
- * of the significand as a fraction. Trailing zeros in the
- * hexadecimal representation are removed unless all the digits
- * are zero, in which case a single zero is used. Next, the
- * exponent is represented by <code>"p"</code> followed
- * by a decimal string of the unbiased exponent as if produced by
- * a call to {@link Integer#toString(int) Integer.toString} on the
- * exponent value.
- *
- * <li>If <i>m</i> is a <code>double</code> value with a subnormal
- * representation, the significand is represented by the
- * characters <code>"0x0."</code> followed by a
- * hexadecimal representation of the rest of the significand as a
- * fraction. Trailing zeros in the hexadecimal representation are
- * removed. Next, the exponent is represented by
- * <code>"p-1022"</code>. Note that there must be at
- * least one nonzero digit in a subnormal significand.
- *
- * </ul>
- *
- * </ul>
- *
- * <table border>
- * <caption><h3>Examples</h3></caption>
- * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
- * <tr><td><code>1.0</code></td> <td><code>0x1.0p0</code></td>
- * <tr><td><code>-1.0</code></td> <td><code>-0x1.0p0</code></td>
- * <tr><td><code>2.0</code></td> <td><code>0x1.0p1</code></td>
- * <tr><td><code>3.0</code></td> <td><code>0x1.8p1</code></td>
- * <tr><td><code>0.5</code></td> <td><code>0x1.0p-1</code></td>
- * <tr><td><code>0.25</code></td> <td><code>0x1.0p-2</code></td>
- * <tr><td><code>Double.MAX_VALUE</code></td>
- * <td><code>0x1.fffffffffffffp1023</code></td>
- * <tr><td><code>Minimum Normal Value</code></td>
- * <td><code>0x1.0p-1022</code></td>
- * <tr><td><code>Maximum Subnormal Value</code></td>
- * <td><code>0x0.fffffffffffffp-1022</code></td>
- * <tr><td><code>Double.MIN_VALUE</code></td>
- * <td><code>0x0.0000000000001p-1022</code></td>
- * </table>
- * @param d the <code>double</code> to be converted.
- * @return a hex string representation of the argument.
- * @since 1.5
- * @author Joseph D. Darcy
- */
- public static String toHexString(double d) {
- /*
- * Modeled after the "a" conversion specifier in C99, section
- * 7.19.6.1; however, the output of this method is more
- * tightly specified.
- */
- if (!FpUtils.isFinite(d) )
- // For infinity and NaN, use the decimal output.
- return Double.toString(d);
- else {
- // Initialized to maximum size of output.
- StringBuffer answer = new StringBuffer(24);
-
- if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
- answer.append("-"); // so append sign info
-
- answer.append("0x");
-
- d = Math.abs(d);
-
- if(d == 0.0) {
- answer.append("0.0p0");
- }
- else {
- boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
-
- // Isolate significand bits and OR in a high-order bit
- // so that the string representation has a known
- // length.
- long signifBits = (Double.doubleToLongBits(d)
- & DoubleConsts.SIGNIF_BIT_MASK) |
- 0x1000000000000000L;
-
- // Subnormal values have a 0 implicit bit; normal
- // values have a a 1 implicit bit.
- answer.append(subnormal ? "0." : "1.");
-
- // Isolate the low-order 13 digits of the hex
- // representation. If all the digits are zero,
- // replace with a single 0; otherwise, remove all
- // trailing zeros.
- String signif = Long.toHexString(signifBits).substring(3,16);
- answer.append(signif.equals("0000000000000") ? // 13 zeros
- "0":
- signif.replaceFirst("0{1,12}$", ""));
-
- // If the value is subnormal, use the E_min exponent
- // value for double; otherwise, extract and report d's
- // exponent (the representation of a subnormal uses
- // E_min -1).
- answer.append("p" + (subnormal ?
- DoubleConsts.MIN_EXPONENT:
- FpUtils.getExponent(d) ));
- }
- return answer.toString();
- }
- }
-
- /**
- * Returns a <code>Double</code> object holding the
- * <code>double</code> value represented by the argument string
- * <code>s</code>.
- *
- * <p>If <code>s</code> is <code>null</code>, then a
- * <code>NullPointerException</code> is thrown.
- *
- * <p>Leading and trailing whitespace characters in <code>s</code>
- * are ignored. Whitespace is removed as if by the {@link
- * String#trim} method; that is, both ASCII space and control
- * characters are removed. The rest of <code>s</code> should
- * constitute a <i>FloatValue</i> as described by the lexical
- * syntax rules:
- *
- * <blockquote>
- * <dl>
- * <dt><i>FloatValue:</i>
- * <dd><i>Sign<sub>opt</sub></i> <code>NaN</code>
- * <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code>
- * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
- * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
- * <dd><i>SignedInteger</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>HexFloatingPointLiteral</i>:
- * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>HexSignificand:</i>
- * <dd><i>HexNumeral</i>
- * <dd><i>HexNumeral</i> <code>.</code>
- * <dd><code>0x</code> <i>HexDigits<sub>opt</sub>
- * </i><code>.</code><i> HexDigits</i>
- * <dd><code>0X</code><i> HexDigits<sub>opt</sub>
- * </i><code>.</code> <i>HexDigits</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>BinaryExponent:</i>
- * <dd><i>BinaryExponentIndicator SignedInteger</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>BinaryExponentIndicator:</i>
- * <dd><code>p</code>
- * <dd><code>P</code>
- * </dl>
- *
- * </blockquote>
- *
- * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
- * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
- * <i>FloatTypeSuffix</i> are as defined in the lexical structure
- * sections of the of the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>. If <code>s</code> does not have the form of
- * a <i>FloatValue</i>, then a <code>NumberFormatException</code>
- * is thrown. Otherwise, <code>s</code> is regarded as
- * representing an exact decimal value in the usual
- * "computerized scientific notation" or as an exact
- * hexadecimal value; this exact numerical value is then
- * conceptually converted to an "infinitely precise"
- * binary value that is then rounded to type <code>double</code>
- * by the usual round-to-nearest rule of IEEE 754 floating-point
- * arithmetic, which includes preserving the sign of a zero
- * value. Finally, a <code>Double</code> object representing this
- * <code>double</code> value is returned.
- *
- * <p> To interpret localized string representations of a
- * floating-point value, use subclasses of {@link
- * java.text.NumberFormat}.
- *
- * <p>Note that trailing format specifiers, specifiers that
- * determine the type of a floating-point literal
- * (<code>1.0f</code> is a <code>float</code> value;
- * <code>1.0d</code> is a <code>double</code> value), do
- * <em>not</em> influence the results of this method. In other
- * words, the numerical value of the input string is converted
- * directly to the target floating-point type. The two-step
- * sequence of conversions, string to <code>float</code> followed
- * by <code>float</code> to <code>double</code>, is <em>not</em>
- * equivalent to converting a string directly to
- * <code>double</code>. For example, the <code>float</code>
- * literal <code>0.1f</code> is equal to the <code>double</code>
- * value <code>0.10000000149011612</code> the <code>float</code>
- * literal <code>0.1f</code> represents a different numerical
- * value than the <code>double</code> literal
- * <code>0.1</code>. (The numerical value 0.1 cannot be exactly
- * represented in a binary floating-point number.)
- *
- * <p>To avoid calling this method on a invalid string and having
- * a <code>NumberFormatException</code> be thrown, the regular
- * expression below can be used to screen the input string:
- *
- * <code>
- * <pre>
- * final String Digits = "(\\p{Digit}+)";
- * final String HexDigits = "(\\p{XDigit}+)";
- * // an exponent is 'e' or 'E' followed by an optionally
- * // signed decimal integer.
- * final String Exp = "[eE][+-]?"+Digits;
- * final String fpRegex =
- * ("[\\x00-\\x20]*"+ // Optional leading "whitespace"
- * "[+-]?(" + // Optional sign character
- * "NaN|" + // "NaN" string
- * "Infinity|" + // "Infinity" string
- *
- * // A decimal floating-point string representing a finite positive
- * // number without a leading sign has at most five basic pieces:
- * // Digits . Digits ExponentPart FloatTypeSuffix
- * //
- * // Since this method allows integer-only strings as input
- * // in addition to strings of floating-point literals, the
- * // two sub-patterns below are simplifications of the grammar
- * // productions from the Java Language Specification, 2nd
- * // edition, section 3.10.2.
- *
- * // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
- * "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
- *
- * // . Digits ExponentPart_opt FloatTypeSuffix_opt
- * "(\\.("+Digits+")("+Exp+")?)|"+
- *
- * // Hexadecimal strings
- * "((" +
- * // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
- * "(0[xX]" + HexDigits + "(\\.)?)|" +
- *
- * // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
- * "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
- *
- * ")[pP][+-]?" + Digits + "))" +
- * "[fFdD]?))" +
- * "[\\x00-\\x20]*");// Optional trailing "whitespace"
- *
- * if (Pattern.matches(fpRegex, myString))
- * Double.valueOf(myString); // Will not throw NumberFormatException
- * else {
- * // Perform suitable alternative action
- * }
- * </pre>
- * </code>
- *
- * @param s the string to be parsed.
- * @return a <code>Double</code> object holding the value
- * represented by the <code>String</code> argument.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- */
- public static Double valueOf(String s) throws NumberFormatException {
- return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
- }
-
- /**
- * Returns a <tt>Double</tt> instance representing the specified
- * <tt>double</tt> value.
- * If a new <tt>Double</tt> instance is not required, this method
- * should generally be used in preference to the constructor
- * {@link #Double(double)}, as this method is likely to yield
- * significantly better space and time performance by caching
- * frequently requested values.
- *
- * @param d a double value.
- * @return a <tt>Double</tt> instance representing <tt>d</tt>.
- * @since 1.5
- */
- public static Double valueOf(double d) {
- return new Double(d);
- }
-
- /**
- * Returns a new <code>double</code> initialized to the value
- * represented by the specified <code>String</code>, as performed
- * by the <code>valueOf</code> method of class
- * <code>Double</code>.
- *
- * @param s the string to be parsed.
- * @return the <code>double</code> value represented by the string
- * argument.
- * @exception NumberFormatException if the string does not contain
- * a parsable <code>double</code>.
- * @see java.lang.Double#valueOf(String)
- * @since 1.2
- */
- public static double parseDouble(String s) throws NumberFormatException {
- return FloatingDecimal.readJavaFormatString(s).doubleValue();
- }
-
- /**
- * Returns <code>true</code> if the specified number is a
- * Not-a-Number (NaN) value, <code>false</code> otherwise.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the value of the argument is NaN;
- * <code>false</code> otherwise.
- */
- static public boolean isNaN(double v) {
- return (v != v);
- }
-
- /**
- * Returns <code>true</code> if the specified number is infinitely
- * large in magnitude, <code>false</code> otherwise.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the value of the argument is positive
- * infinity or negative infinity; <code>false</code> otherwise.
- */
- static public boolean isInfinite(double v) {
- return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
- }
-
- /**
- * The value of the Double.
- *
- * @serial
- */
- private final double value;
-
- /**
- * Constructs a newly allocated <code>Double</code> object that
- * represents the primitive <code>double</code> argument.
- *
- * @param value the value to be represented by the <code>Double</code>.
- */
- public Double(double value) {
- this.value = value;
- }
-
- /**
- * Constructs a newly allocated <code>Double</code> object that
- * represents the floating-point value of type <code>double</code>
- * represented by the string. The string is converted to a
- * <code>double</code> value as if by the <code>valueOf</code> method.
- *
- * @param s a string to be converted to a <code>Double</code>.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- * @see java.lang.Double#valueOf(java.lang.String)
- */
- public Double(String s) throws NumberFormatException {
- // REMIND: this is inefficient
- this(valueOf(s).doubleValue());
- }
-
- /**
- * Returns <code>true</code> if this <code>Double</code> value is
- * a Not-a-Number (NaN), <code>false</code> otherwise.
- *
- * @return <code>true</code> if the value represented by this object is
- * NaN; <code>false</code> otherwise.
- */
- public boolean isNaN() {
- return isNaN(value);
- }
-
- /**
- * Returns <code>true</code> if this <code>Double</code> value is
- * infinitely large in magnitude, <code>false</code> otherwise.
- *
- * @return <code>true</code> if the value represented by this object is
- * positive infinity or negative infinity;
- * <code>false</code> otherwise.
- */
- public boolean isInfinite() {
- return isInfinite(value);
- }
-
- /**
- * Returns a string representation of this <code>Double</code> object.
- * The primitive <code>double</code> value represented by this
- * object is converted to a string exactly as if by the method
- * <code>toString</code> of one argument.
- *
- * @return a <code>String</code> representation of this object.
- * @see java.lang.Double#toString(double)
- */
- public String toString() {
- return String.valueOf(value);
- }
-
- /**
- * Returns the value of this <code>Double</code> as a <code>byte</code> (by
- * casting to a <code>byte</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>byte</code>
- * @since JDK1.1
- */
- public byte byteValue() {
- return (byte)value;
- }
-
- /**
- * Returns the value of this <code>Double</code> as a
- * <code>short</code> (by casting to a <code>short</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>short</code>
- * @since JDK1.1
- */
- public short shortValue() {
- return (short)value;
- }
-
- /**
- * Returns the value of this <code>Double</code> as an
- * <code>int</code> (by casting to type <code>int</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>int</code>
- */
- public int intValue() {
- return (int)value;
- }
-
- /**
- * Returns the value of this <code>Double</code> as a
- * <code>long</code> (by casting to type <code>long</code>).
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>long</code>
- */
- public long longValue() {
- return (long)value;
- }
-
- /**
- * Returns the <code>float</code> value of this
- * <code>Double</code> object.
- *
- * @return the <code>double</code> value represented by this object
- * converted to type <code>float</code>
- * @since JDK1.0
- */
- public float floatValue() {
- return (float)value;
- }
-
- /**
- * Returns the <code>double</code> value of this
- * <code>Double</code> object.
- *
- * @return the <code>double</code> value represented by this object
- */
- public double doubleValue() {
- return (double)value;
- }
-
- /**
- * Returns a hash code for this <code>Double</code> object. The
- * result is the exclusive OR of the two halves of the
- * <code>long</code> integer bit representation, exactly as
- * produced by the method {@link #doubleToLongBits(double)}, of
- * the primitive <code>double</code> value represented by this
- * <code>Double</code> object. That is, the hash code is the value
- * of the expression:
- * <blockquote><pre>
- * (int)(v^(v>>>32))
- * </pre></blockquote>
- * where <code>v</code> is defined by:
- * <blockquote><pre>
- * long v = Double.doubleToLongBits(this.doubleValue());
- * </pre></blockquote>
- *
- * @return a <code>hash code</code> value for this object.
- */
- public int hashCode() {
- long bits = doubleToLongBits(value);
- return (int)(bits ^ (bits >>> 32));
- }
-
- /**
- * Compares this object against the specified object. The result
- * is <code>true</code> if and only if the argument is not
- * <code>null</code> and is a <code>Double</code> object that
- * represents a <code>double</code> that has the same value as the
- * <code>double</code> represented by this object. For this
- * purpose, two <code>double</code> values are considered to be
- * the same if and only if the method {@link
- * #doubleToLongBits(double)} returns the identical
- * <code>long</code> value when applied to each.
- * <p>
- * Note that in most cases, for two instances of class
- * <code>Double</code>, <code>d1</code> and <code>d2</code>, the
- * value of <code>d1.equals(d2)</code> is <code>true</code> if and
- * only if
- * <blockquote><pre>
- * d1.doubleValue() == d2.doubleValue()
- * </pre></blockquote>
- * <p>
- * also has the value <code>true</code>. However, there are two
- * exceptions:
- * <ul>
- * <li>If <code>d1</code> and <code>d2</code> both represent
- * <code>Double.NaN</code>, then the <code>equals</code> method
- * returns <code>true</code>, even though
- * <code>Double.NaN==Double.NaN</code> has the value
- * <code>false</code>.
- * <li>If <code>d1</code> represents <code>+0.0</code> while
- * <code>d2</code> represents <code>-0.0</code>, or vice versa,
- * the <code>equal</code> test has the value <code>false</code>,
- * even though <code>+0.0==-0.0</code> has the value <code>true</code>.
- * </ul>
- * This definition allows hash tables to operate properly.
- * @param obj the object to compare with.
- * @return <code>true</code> if the objects are the same;
- * <code>false</code> otherwise.
- * @see java.lang.Double#doubleToLongBits(double)
- */
- public boolean equals(Object obj) {
- return (obj instanceof Double)
- && (doubleToLongBits(((Double)obj).value) ==
- doubleToLongBits(value));
- }
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout.
- * <p>
- * Bit 63 (the bit that is selected by the mask
- * <code>0x8000000000000000L</code>) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * <code>0x000fffffffffffffL</code>) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- * <p>
- * If the argument is positive infinity, the result is
- * <code>0x7ff0000000000000L</code>.
- * <p>
- * If the argument is negative infinity, the result is
- * <code>0xfff0000000000000L</code>.
- * <p>
- * If the argument is NaN, the result is
- * <code>0x7ff8000000000000L</code>.
- * <p>
- * In all cases, the result is a <code>long</code> integer that, when
- * given to the {@link #longBitsToDouble(long)} method, will produce a
- * floating-point value the same as the argument to
- * <code>doubleToLongBits</code> (except all NaN values are
- * collapsed to a single "canonical" NaN value).
- *
- * @param value a <code>double</code> precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native long doubleToLongBits(double value);
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout, preserving Not-a-Number (NaN) values.
- * <p>
- * Bit 63 (the bit that is selected by the mask
- * <code>0x8000000000000000L</code>) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * <code>0x000fffffffffffffL</code>) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- * <p>
- * If the argument is positive infinity, the result is
- * <code>0x7ff0000000000000L</code>.
- * <p>
- * If the argument is negative infinity, the result is
- * <code>0xfff0000000000000L</code>.
- * <p>
- * If the argument is NaN, the result is the <code>long</code>
- * integer representing the actual NaN value. Unlike the
- * <code>doubleToLongBits</code> method,
- * <code>doubleToRawLongBits</code> does not collapse all the bit
- * patterns encoding a NaN to a single "canonical" NaN
- * value.
- * <p>
- * In all cases, the result is a <code>long</code> integer that,
- * when given to the {@link #longBitsToDouble(long)} method, will
- * produce a floating-point value the same as the argument to
- * <code>doubleToRawLongBits</code>.
- *
- * @param value a <code>double</code> precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native long doubleToRawLongBits(double value);
-
- /**
- * Returns the <code>double</code> value corresponding to a given
- * bit representation.
- * The argument is considered to be a representation of a
- * floating-point value according to the IEEE 754 floating-point
- * "double format" bit layout.
- * <p>
- * If the argument is <code>0x7ff0000000000000L</code>, the result
- * is positive infinity.
- * <p>
- * If the argument is <code>0xfff0000000000000L</code>, the result
- * is negative infinity.
- * <p>
- * If the argument is any value in the range
- * <code>0x7ff0000000000001L</code> through
- * <code>0x7fffffffffffffffL</code> or in the range
- * <code>0xfff0000000000001L</code> through
- * <code>0xffffffffffffffffL</code>, the result is a NaN. No IEEE
- * 754 floating-point operation provided by Java can distinguish
- * between two NaN values of the same type with different bit
- * patterns. Distinct values of NaN are only distinguishable by
- * use of the <code>Double.doubleToRawLongBits</code> method.
- * <p>
- * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
- * values that can be computed from the argument:
- * <blockquote><pre>
- * int s = ((bits >> 63) == 0) ? 1 : -1;
- * int e = (int)((bits >> 52) & 0x7ffL);
- * long m = (e == 0) ?
- * (bits & 0xfffffffffffffL) << 1 :
- * (bits & 0xfffffffffffffL) | 0x10000000000000L;
- * </pre></blockquote>
- * Then the floating-point result equals the value of the mathematical
- * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-1075</sup>.
- *<p>
- * Note that this method may not be able to return a
- * <code>double</code> NaN with exactly same bit pattern as the
- * <code>long</code> argument. IEEE 754 distinguishes between two
- * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
- * differences between the two kinds of NaN are generally not
- * visible in Java. Arithmetic operations on signaling NaNs turn
- * them into quiet NaNs with a different, but often similar, bit
- * pattern. However, on some processors merely copying a
- * signaling NaN also performs that conversion. In particular,
- * copying a signaling NaN to return it to the calling method
- * may perform this conversion. So <code>longBitsToDouble</code>
- * may not be able to return a <code>double</code> with a
- * signaling NaN bit pattern. Consequently, for some
- * <code>long</code> values,
- * <code>doubleToRawLongBits(longBitsToDouble(start))</code> may
- * <i>not</i> equal <code>start</code>. Moreover, which
- * particular bit patterns represent signaling NaNs is platform
- * dependent; although all NaN bit patterns, quiet or signaling,
- * must be in the NaN range identified above.
- *
- * @param bits any <code>long</code> integer.
- * @return the <code>double</code> floating-point value with the same
- * bit pattern.
- */
- public static native double longBitsToDouble(long bits);
-
- /**
- * Compares two <code>Double</code> objects numerically. There
- * are two ways in which comparisons performed by this method
- * differ from those performed by the Java language numerical
- * comparison operators (<code><, <=, ==, >= ></code>)
- * when applied to primitive <code>double</code> values:
- * <ul><li>
- * <code>Double.NaN</code> is considered by this method
- * to be equal to itself and greater than all other
- * <code>double</code> values (including
- * <code>Double.POSITIVE_INFINITY</code>).
- * <li>
- * <code>0.0d</code> is considered by this method to be greater
- * than <code>-0.0d</code>.
- * </ul>
- * This ensures that the <i>natural ordering</i> of
- * <tt>Double</tt> objects imposed by this method is <i>consistent
- * with equals</i>.
- *
- * @param anotherDouble the <code>Double</code> to be compared.
- * @return the value <code>0</code> if <code>anotherDouble</code> is
- * numerically equal to this <code>Double</code> a value
- * less than <code>0</code> if this <code>Double</code>
- * is numerically less than <code>anotherDouble</code>
- * and a value greater than <code>0</code> if this
- * <code>Double</code> is numerically greater than
- * <code>anotherDouble</code>.
- *
- * @since 1.2
- */
- public int compareTo(Double anotherDouble) {
- return Double.compare(value, anotherDouble.value);
- }
-
- /**
- * Compares the two specified <code>double</code> values. The sign
- * of the integer value returned is the same as that of the
- * integer that would be returned by the call:
- * <pre>
- * new Double(d1).compareTo(new Double(d2))
- * </pre>
- *
- * @param d1 the first <code>double</code> to compare
- * @param d2 the second <code>double</code> to compare
- * @return the value <code>0</code> if <code>d1</code> is
- * numerically equal to <code>d2</code> a value less than
- * <code>0</code> if <code>d1</code> is numerically less than
- * <code>d2</code> and a value greater than <code>0</code>
- * if <code>d1</code> is numerically greater than
- * <code>d2</code>.
- * @since 1.4
- */
- public static int compare(double d1, double d2) {
- if (d1 < d2)
- return -1; // Neither val is NaN, thisVal is smaller
- if (d1 > d2)
- return 1; // Neither val is NaN, thisVal is larger
-
- long thisBits = Double.doubleToLongBits(d1);
- long anotherBits = Double.doubleToLongBits(d2);
-
- return (thisBits == anotherBits ? 0 : // Values are equal
- (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
- 1)); // (0.0, -0.0) or (NaN, !NaN)
- }
-
- /** use serialVersionUID from JDK 1.0.2 for interoperability */
- private static final long serialVersionUID = -9172774392245257468L;
- }