- /*
- * @(#)Math.java 1.69 04/06/14
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.lang;
- import java.util.Random;
-
-
- /**
- * The class <code>Math</code> contains methods for performing basic
- * numeric operations such as the elementary exponential, logarithm,
- * square root, and trigonometric functions.
- *
- * <p>Unlike some of the numeric methods of class
- * <code>StrictMath</code>, all implementations of the equivalent
- * functions of class <code>Math</code> are not defined to return the
- * bit-for-bit same results. This relaxation permits
- * better-performing implementations where strict reproducibility is
- * not required.
- *
- * <p>By default many of the <code>Math</code> methods simply call
- * the equivalent method in <code>StrictMath</code> for their
- * implementation. Code generators are encouraged to use
- * platform-specific native libraries or microprocessor instructions,
- * where available, to provide higher-performance implementations of
- * <code>Math</code> methods. Such higher-performance
- * implementations still must conform to the specification for
- * <code>Math</code>.
- *
- * <p>The quality of implementation specifications concern two
- * properties, accuracy of the returned result and monotonicity of the
- * method. Accuracy of the floating-point <code>Math</code> methods
- * is measured in terms of <i>ulps</i>, units in the last place. For
- * a given floating-point format, an ulp of a specific real number
- * value is the distance between the two floating-point values
- * bracketing that numerical value. When discussing the accuracy of a
- * method as a whole rather than at a specific argument, the number of
- * ulps cited is for the worst-case error at any argument. If a
- * method always has an error less than 0.5 ulps, the method always
- * returns the floating-point number nearest the exact result; such a
- * method is <i>correctly rounded</i>. A correctly rounded method is
- * generally the best a floating-point approximation can be; however,
- * it is impractical for many floating-point methods to be correctly
- * rounded. Instead, for the <code>Math</code> class, a larger error
- * bound of 1 or 2 ulps is allowed for certain methods. Informally,
- * with a 1 ulp error bound, when the exact result is a representable
- * number, the exact result should be returned as the computed result;
- * otherwise, either of the two floating-point values which bracket
- * the exact result may be returned. For exact results large in
- * magnitude, one of the endpoints of the bracket may be infinite.
- * Besides accuracy at individual arguments, maintaining proper
- * relations between the method at different arguments is also
- * important. Therefore, most methods with more than 0.5 ulp errors
- * are required to be <i>semi-monotonic</i>: whenever the mathematical
- * function is non-decreasing, so is the floating-point approximation,
- * likewise, whenever the mathematical function is non-increasing, so
- * is the floating-point approximation. Not all approximations that
- * have 1 ulp accuracy will automatically meet the monotonicity
- * requirements.
- *
- * @author unascribed
- * @author Joseph D. Darcy
- * @version 1.69, 06/14/04
- * @since JDK1.0
- */
-
- public final class Math {
-
- /**
- * Don't let anyone instantiate this class.
- */
- private Math() {}
-
- /**
- * The <code>double</code> value that is closer than any other to
- * <i>e</i>, the base of the natural logarithms.
- */
- public static final double E = 2.7182818284590452354;
-
- /**
- * The <code>double</code> value that is closer than any other to
- * <i>pi</i>, the ratio of the circumference of a circle to its
- * diameter.
- */
- public static final double PI = 3.14159265358979323846;
-
- /**
- * Returns the trigonometric sine of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the
- * result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a an angle, in radians.
- * @return the sine of the argument.
- */
- public static double sin(double a) {
- return StrictMath.sin(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the trigonometric cosine of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the
- * result is NaN.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a an angle, in radians.
- * @return the cosine of the argument.
- */
- public static double cos(double a) {
- return StrictMath.cos(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the trigonometric tangent of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the result
- * is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a an angle, in radians.
- * @return the tangent of the argument.
- */
- public static double tan(double a) {
- return StrictMath.tan(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the arc sine of an angle, in the range of -<i>pi</i>/2 through
- * <i>pi</i>/2. Special cases:
- * <ul><li>If the argument is NaN or its absolute value is greater
- * than 1, then the result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the value whose arc sine is to be returned.
- * @return the arc sine of the argument.
- */
- public static double asin(double a) {
- return StrictMath.asin(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the arc cosine of an angle, in the range of 0.0 through
- * <i>pi</i>. Special case:
- * <ul><li>If the argument is NaN or its absolute value is greater
- * than 1, then the result is NaN.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the value whose arc cosine is to be returned.
- * @return the arc cosine of the argument.
- */
- public static double acos(double a) {
- return StrictMath.acos(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the arc tangent of an angle, in the range of -<i>pi</i>/2
- * through <i>pi</i>/2. Special cases:
- * <ul><li>If the argument is NaN, then the result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the value whose arc tangent is to be returned.
- * @return the arc tangent of the argument.
- */
- public static double atan(double a) {
- return StrictMath.atan(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Converts an angle measured in degrees to an approximately
- * equivalent angle measured in radians. The conversion from
- * degrees to radians is generally inexact.
- *
- * @param angdeg an angle, in degrees
- * @return the measurement of the angle <code>angdeg</code>
- * in radians.
- * @since 1.2
- */
- public static double toRadians(double angdeg) {
- return angdeg / 180.0 * PI;
- }
-
- /**
- * Converts an angle measured in radians to an approximately
- * equivalent angle measured in degrees. The conversion from
- * radians to degrees is generally inexact; users should
- * <i>not</i> expect <code>cos(toRadians(90.0))</code> to exactly
- * equal <code>0.0</code>.
- *
- * @param angrad an angle, in radians
- * @return the measurement of the angle <code>angrad</code>
- * in degrees.
- * @since 1.2
- */
- public static double toDegrees(double angrad) {
- return angrad * 180.0 / PI;
- }
-
- /**
- * Returns Euler's number <i>e</i> raised to the power of a
- * <code>double</code> value. Special cases:
- * <ul><li>If the argument is NaN, the result is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is negative infinity, then the result is
- * positive zero.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the exponent to raise <i>e</i> to.
- * @return the value <i>e</i><sup><code>a</code></sup>,
- * where <i>e</i> is the base of the natural logarithms.
- */
- public static double exp(double a) {
- return StrictMath.exp(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the natural logarithm (base <i>e</i>) of a <code>double</code>
- * value. Special cases:
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is negative infinity.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a a value
- * @return the value ln <code>a</code>, the natural logarithm of
- * <code>a</code>.
- */
- public static double log(double a) {
- return StrictMath.log(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the base 10 logarithm of a <code>double</code> value.
- * Special cases:
- *
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is negative infinity.
- * <li> If the argument is equal to 10<sup><i>n</i></sup> for
- * integer <i>n</i>, then the result is <i>n</i>.
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a a value
- * @return the base 10 logarithm of <code>a</code>.
- * @since 1.5
- */
- public static double log10(double a) {
- return StrictMath.log10(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the correctly rounded positive square root of a
- * <code>double</code> value.
- * Special cases:
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is positive
- * infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is the same as the argument.</ul>
- * Otherwise, the result is the <code>double</code> value closest to
- * the true mathematical square root of the argument value.
- *
- * @param a a value.
- * @return the positive square root of <code>a</code>.
- * If the argument is NaN or less than zero, the result is NaN.
- */
- public static double sqrt(double a) {
- return StrictMath.sqrt(a); // default impl. delegates to StrictMath
- // Note that hardware sqrt instructions
- // frequently can be directly used by JITs
- // and should be much faster than doing
- // Math.sqrt in software.
- }
-
-
- /**
- * Returns the cube root of a <code>double</code> value. For
- * positive finite <code>x</code>, <code>cbrt(-x) ==
- * -cbrt(x)</code> that is, the cube root of a negative value is
- * the negative of the cube root of that value's magnitude.
- *
- * Special cases:
- *
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- *
- * @param a a value.
- * @return the cube root of <code>a</code>.
- * @since 1.5
- */
- public static double cbrt(double a) {
- return StrictMath.cbrt(a);
- }
-
- /**
- * Computes the remainder operation on two arguments as prescribed
- * by the IEEE 754 standard.
- * The remainder value is mathematically equal to
- * <code>f1 - f2</code> × <i>n</i>,
- * where <i>n</i> is the mathematical integer closest to the exact
- * mathematical value of the quotient <code>f1/f2</code>, and if two
- * mathematical integers are equally close to <code>f1/f2</code>,
- * then <i>n</i> is the integer that is even. If the remainder is
- * zero, its sign is the same as the sign of the first argument.
- * Special cases:
- * <ul><li>If either argument is NaN, or the first argument is infinite,
- * or the second argument is positive zero or negative zero, then the
- * result is NaN.
- * <li>If the first argument is finite and the second argument is
- * infinite, then the result is the same as the first argument.</ul>
- *
- * @param f1 the dividend.
- * @param f2 the divisor.
- * @return the remainder when <code>f1</code> is divided by
- * <code>f2</code>.
- */
- public static double IEEEremainder(double f1, double f2) {
- return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
- }
-
- /**
- * Returns the smallest (closest to negative infinity)
- * <code>double</code> value that is greater than or equal to the
- * argument and is equal to a mathematical integer. Special cases:
- * <ul><li>If the argument value is already equal to a
- * mathematical integer, then the result is the same as the
- * argument. <li>If the argument is NaN or an infinity or
- * positive zero or negative zero, then the result is the same as
- * the argument. <li>If the argument value is less than zero but
- * greater than -1.0, then the result is negative zero.</ul> Note
- * that the value of <code>Math.ceil(x)</code> is exactly the
- * value of <code>-Math.floor(-x)</code>.
- *
- *
- * @param a a value.
- * @return the smallest (closest to negative infinity)
- * floating-point value that is greater than or equal to
- * the argument and is equal to a mathematical integer.
- */
- public static double ceil(double a) {
- return StrictMath.ceil(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the largest (closest to positive infinity)
- * <code>double</code> value that is less than or equal to the
- * argument and is equal to a mathematical integer. Special cases:
- * <ul><li>If the argument value is already equal to a
- * mathematical integer, then the result is the same as the
- * argument. <li>If the argument is NaN or an infinity or
- * positive zero or negative zero, then the result is the same as
- * the argument.</ul>
- *
- * @param a a value.
- * @return the largest (closest to positive infinity)
- * floating-point value that less than or equal to the argument
- * and is equal to a mathematical integer.
- */
- public static double floor(double a) {
- return StrictMath.floor(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the <code>double</code> value that is closest in value
- * to the argument and is equal to a mathematical integer. If two
- * <code>double</code> values that are mathematical integers are
- * equally close, the result is the integer value that is
- * even. Special cases:
- * <ul><li>If the argument value is already equal to a mathematical
- * integer, then the result is the same as the argument.
- * <li>If the argument is NaN or an infinity or positive zero or negative
- * zero, then the result is the same as the argument.</ul>
- *
- * @param a a <code>double</code> value.
- * @return the closest floating-point value to <code>a</code> that is
- * equal to a mathematical integer.
- */
- public static double rint(double a) {
- return StrictMath.rint(a); // default impl. delegates to StrictMath
- }
-
- /**
- * Converts rectangular coordinates (<code>x</code>, <code>y</code>)
- * to polar (r, <i>theta</i>).
- * This method computes the phase <i>theta</i> by computing an arc tangent
- * of <code>y/x</code> in the range of -<i>pi</i> to <i>pi</i>. Special
- * cases:
- * <ul><li>If either argument is NaN, then the result is NaN.
- * <li>If the first argument is positive zero and the second argument
- * is positive, or the first argument is positive and finite and the
- * second argument is positive infinity, then the result is positive
- * zero.
- * <li>If the first argument is negative zero and the second argument
- * is positive, or the first argument is negative and finite and the
- * second argument is positive infinity, then the result is negative zero.
- * <li>If the first argument is positive zero and the second argument
- * is negative, or the first argument is positive and finite and the
- * second argument is negative infinity, then the result is the
- * <code>double</code> value closest to <i>pi</i>.
- * <li>If the first argument is negative zero and the second argument
- * is negative, or the first argument is negative and finite and the
- * second argument is negative infinity, then the result is the
- * <code>double</code> value closest to -<i>pi</i>.
- * <li>If the first argument is positive and the second argument is
- * positive zero or negative zero, or the first argument is positive
- * infinity and the second argument is finite, then the result is the
- * <code>double</code> value closest to <i>pi</i>/2.
- * <li>If the first argument is negative and the second argument is
- * positive zero or negative zero, or the first argument is negative
- * infinity and the second argument is finite, then the result is the
- * <code>double</code> value closest to -<i>pi</i>/2.
- * <li>If both arguments are positive infinity, then the result is the
- * <code>double</code> value closest to <i>pi</i>/4.
- * <li>If the first argument is positive infinity and the second argument
- * is negative infinity, then the result is the <code>double</code>
- * value closest to 3*<i>pi</i>/4.
- * <li>If the first argument is negative infinity and the second argument
- * is positive infinity, then the result is the <code>double</code> value
- * closest to -<i>pi</i>/4.
- * <li>If both arguments are negative infinity, then the result is the
- * <code>double</code> value closest to -3*<i>pi</i>/4.</ul>
- *
- * <p>The computed result must be within 2 ulps of the exact result.
- * Results must be semi-monotonic.
- *
- * @param y the ordinate coordinate
- * @param x the abscissa coordinate
- * @return the <i>theta</i> component of the point
- * (<i>r</i>, <i>theta</i>)
- * in polar coordinates that corresponds to the point
- * (<i>x</i>, <i>y</i>) in Cartesian coordinates.
- */
- public static double atan2(double y, double x) {
- return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the value of the first argument raised to the power of the
- * second argument. Special cases:
- *
- * <ul><li>If the second argument is positive or negative zero, then the
- * result is 1.0.
- * <li>If the second argument is 1.0, then the result is the same as the
- * first argument.
- * <li>If the second argument is NaN, then the result is NaN.
- * <li>If the first argument is NaN and the second argument is nonzero,
- * then the result is NaN.
- *
- * <li>If
- * <ul>
- * <li>the absolute value of the first argument is greater than 1
- * and the second argument is positive infinity, or
- * <li>the absolute value of the first argument is less than 1 and
- * the second argument is negative infinity,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the absolute value of the first argument is greater than 1 and
- * the second argument is negative infinity, or
- * <li>the absolute value of the
- * first argument is less than 1 and the second argument is positive
- * infinity,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If the absolute value of the first argument equals 1 and the
- * second argument is infinite, then the result is NaN.
- *
- * <li>If
- * <ul>
- * <li>the first argument is positive zero and the second argument
- * is greater than zero, or
- * <li>the first argument is positive infinity and the second
- * argument is less than zero,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is positive zero and the second argument
- * is less than zero, or
- * <li>the first argument is positive infinity and the second
- * argument is greater than zero,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is greater than zero but not a finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is less than zero but not a finite odd integer,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is a positive finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is a negative finite odd integer,
- * </ul>
- * then the result is negative zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is less than zero but not a finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is greater than zero but not a finite odd integer,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is a negative finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is a positive finite odd integer,
- * </ul>
- * then the result is negative infinity.
- *
- * <li>If the first argument is finite and less than zero
- * <ul>
- * <li> if the second argument is a finite even integer, the
- * result is equal to the result of raising the absolute value of
- * the first argument to the power of the second argument
- *
- * <li>if the second argument is a finite odd integer, the result
- * is equal to the negative of the result of raising the absolute
- * value of the first argument to the power of the second
- * argument
- *
- * <li>if the second argument is finite and not an integer, then
- * the result is NaN.
- * </ul>
- *
- * <li>If both arguments are integers, then the result is exactly equal
- * to the mathematical result of raising the first argument to the power
- * of the second argument if that result can in fact be represented
- * exactly as a <code>double</code> value.</ul>
- *
- * <p>(In the foregoing descriptions, a floating-point value is
- * considered to be an integer if and only if it is finite and a
- * fixed point of the method {@link #ceil <tt>ceil</tt>} or,
- * equivalently, a fixed point of the method {@link #floor
- * <tt>floor</tt>}. A value is a fixed point of a one-argument
- * method if and only if the result of applying the method to the
- * value is equal to the value.)
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the base.
- * @param b the exponent.
- * @return the value <code>a<sup>b</sup></code>.
- */
- public static double pow(double a, double b) {
- return StrictMath.pow(a, b); // default impl. delegates to StrictMath
- }
-
- /**
- * Returns the closest <code>int</code> to the argument. The
- * result is rounded to an integer by adding 1/2, taking the
- * floor of the result, and casting the result to type <code>int</code>.
- * In other words, the result is equal to the value of the expression:
- * <p><pre>(int)Math.floor(a + 0.5f)</pre>
- * <p>
- * Special cases:
- * <ul><li>If the argument is NaN, the result is 0.
- * <li>If the argument is negative infinity or any value less than or
- * equal to the value of <code>Integer.MIN_VALUE</code>, the result is
- * equal to the value of <code>Integer.MIN_VALUE</code>.
- * <li>If the argument is positive infinity or any value greater than or
- * equal to the value of <code>Integer.MAX_VALUE</code>, the result is
- * equal to the value of <code>Integer.MAX_VALUE</code>.</ul>
- *
- * @param a a floating-point value to be rounded to an integer.
- * @return the value of the argument rounded to the nearest
- * <code>int</code> value.
- * @see java.lang.Integer#MAX_VALUE
- * @see java.lang.Integer#MIN_VALUE
- */
- public static int round(float a) {
- return (int)floor(a + 0.5f);
- }
-
- /**
- * Returns the closest <code>long</code> to the argument. The result
- * is rounded to an integer by adding 1/2, taking the floor of the
- * result, and casting the result to type <code>long</code>. In other
- * words, the result is equal to the value of the expression:
- * <p><pre>(long)Math.floor(a + 0.5d)</pre>
- * <p>
- * Special cases:
- * <ul><li>If the argument is NaN, the result is 0.
- * <li>If the argument is negative infinity or any value less than or
- * equal to the value of <code>Long.MIN_VALUE</code>, the result is
- * equal to the value of <code>Long.MIN_VALUE</code>.
- * <li>If the argument is positive infinity or any value greater than or
- * equal to the value of <code>Long.MAX_VALUE</code>, the result is
- * equal to the value of <code>Long.MAX_VALUE</code>.</ul>
- *
- * @param a a floating-point value to be rounded to a
- * <code>long</code>.
- * @return the value of the argument rounded to the nearest
- * <code>long</code> value.
- * @see java.lang.Long#MAX_VALUE
- * @see java.lang.Long#MIN_VALUE
- */
- public static long round(double a) {
- return (long)floor(a + 0.5d);
- }
-
- private static Random randomNumberGenerator;
-
- private static synchronized void initRNG() {
- if (randomNumberGenerator == null)
- randomNumberGenerator = new Random();
- }
-
- /**
- * Returns a <code>double</code> value with a positive sign, greater
- * than or equal to <code>0.0</code> and less than <code>1.0</code>.
- * Returned values are chosen pseudorandomly with (approximately)
- * uniform distribution from that range.
- *
- * <p>When this method is first called, it creates a single new
- * pseudorandom-number generator, exactly as if by the expression
- * <blockquote><pre>new java.util.Random</pre></blockquote> This
- * new pseudorandom-number generator is used thereafter for all
- * calls to this method and is used nowhere else.
- *
- * <p>This method is properly synchronized to allow correct use by
- * more than one thread. However, if many threads need to generate
- * pseudorandom numbers at a great rate, it may reduce contention
- * for each thread to have its own pseudorandom-number generator.
- *
- * @return a pseudorandom <code>double</code> greater than or equal
- * to <code>0.0</code> and less than <code>1.0</code>.
- * @see java.util.Random#nextDouble()
- */
- public static double random() {
- if (randomNumberGenerator == null) initRNG();
- return randomNumberGenerator.nextDouble();
- }
-
- /**
- * Returns the absolute value of an <code>int</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- *
- * <p>Note that if the argument is equal to the value of
- * <code>Integer.MIN_VALUE</code>, the most negative representable
- * <code>int</code> value, the result is that same value, which is
- * negative.
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- * @see java.lang.Integer#MIN_VALUE
- */
- public static int abs(int a) {
- return (a < 0) ? -a : a;
- }
-
- /**
- * Returns the absolute value of a <code>long</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- *
- * <p>Note that if the argument is equal to the value of
- * <code>Long.MIN_VALUE</code>, the most negative representable
- * <code>long</code> value, the result is that same value, which
- * is negative.
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- * @see java.lang.Long#MIN_VALUE
- */
- public static long abs(long a) {
- return (a < 0) ? -a : a;
- }
-
- /**
- * Returns the absolute value of a <code>float</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- * Special cases:
- * <ul><li>If the argument is positive zero or negative zero, the
- * result is positive zero.
- * <li>If the argument is infinite, the result is positive infinity.
- * <li>If the argument is NaN, the result is NaN.</ul>
- * In other words, the result is the same as the value of the expression:
- * <p><pre>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</pre>
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- public static float abs(float a) {
- return (a <= 0.0F) ? 0.0F - a : a;
- }
-
- /**
- * Returns the absolute value of a <code>double</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- * Special cases:
- * <ul><li>If the argument is positive zero or negative zero, the result
- * is positive zero.
- * <li>If the argument is infinite, the result is positive infinity.
- * <li>If the argument is NaN, the result is NaN.</ul>
- * In other words, the result is the same as the value of the expression:
- * <p><code>Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)</code>
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- public static double abs(double a) {
- return (a <= 0.0D) ? 0.0D - a : a;
- }
-
- /**
- * Returns the greater of two <code>int</code> values. That is, the
- * result is the argument closer to the value of
- * <code>Integer.MAX_VALUE</code>. If the arguments have the same value,
- * the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MAX_VALUE
- */
- public static int max(int a, int b) {
- return (a >= b) ? a : b;
- }
-
- /**
- * Returns the greater of two <code>long</code> values. That is, the
- * result is the argument closer to the value of
- * <code>Long.MAX_VALUE</code>. If the arguments have the same value,
- * the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MAX_VALUE
- */
- public static long max(long a, long b) {
- return (a >= b) ? a : b;
- }
-
- private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
- private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
-
- /**
- * Returns the greater of two <code>float</code> values. That is,
- * the result is the argument closer to positive infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other negative zero, the
- * result is positive zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- */
- public static float max(float a, float b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0f) && (b == 0.0f)
- && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
- return b;
- }
- return (a >= b) ? a : b;
- }
-
- /**
- * Returns the greater of two <code>double</code> values. That
- * is, the result is the argument closer to positive infinity. If
- * the arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other negative zero, the
- * result is positive zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- */
- public static double max(double a, double b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0d) && (b == 0.0d)
- && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
- return b;
- }
- return (a >= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>int</code> values. That is,
- * the result the argument closer to the value of
- * <code>Integer.MIN_VALUE</code>. If the arguments have the same
- * value, the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MIN_VALUE
- */
- public static int min(int a, int b) {
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>long</code> values. That is,
- * the result is the argument closer to the value of
- * <code>Long.MIN_VALUE</code>. If the arguments have the same
- * value, the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MIN_VALUE
- */
- public static long min(long a, long b) {
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>float</code> values. That is,
- * the result is the value closer to negative infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If
- * one argument is positive zero and the other is negative zero,
- * the result is negative zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b.</code>
- */
- public static float min(float a, float b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0f) && (b == 0.0f)
- && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
- return b;
- }
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>double</code> values. That
- * is, the result is the value closer to negative infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other is negative zero, the
- * result is negative zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b</code>.
- */
- public static double min(double a, double b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0d) && (b == 0.0d)
- && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
- return b;
- }
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the size of an ulp of the argument. An ulp of a
- * <code>double</code> value is the positive distance between this
- * floating-point value and the <code>double</code> value next
- * larger in magnitude. Note that for non-NaN <i>x</i>,
- * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive or negative infinity, then the
- * result is positive infinity.
- * <li> If the argument is positive or negative zero, then the result is
- * <code>Double.MIN_VALUE</code>.
- * <li> If the argument is ±<code>Double.MAX_VALUE</code>, then
- * the result is equal to 2<sup>971</sup>.
- * </ul>
- *
- * @param d the floating-point value whose ulp is to be returned
- * @return the size of an ulp of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static double ulp(double d) {
- return sun.misc.FpUtils.ulp(d);
- }
-
- /**
- * Returns the size of an ulp of the argument. An ulp of a
- * <code>float</code> value is the positive distance between this
- * floating-point value and the <code>float</code> value next
- * larger in magnitude. Note that for non-NaN <i>x</i>,
- * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive or negative infinity, then the
- * result is positive infinity.
- * <li> If the argument is positive or negative zero, then the result is
- * <code>Float.MIN_VALUE</code>.
- * <li> If the argument is ±<code>Float.MAX_VALUE</code>, then
- * the result is equal to 2<sup>104</sup>.
- * </ul>
- *
- * @param f the floating-point value whose ulp is to be returned
- * @return the size of an ulp of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static float ulp(float f) {
- return sun.misc.FpUtils.ulp(f);
- }
-
- /**
- * Returns the signum function of the argument; zero if the argument
- * is zero, 1.0 if the argument is greater than zero, -1.0 if the
- * argument is less than zero.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive zero or negative zero, then the
- * result is the same as the argument.
- * </ul>
- *
- * @param d the floating-point value whose signum is to be returned
- * @return the signum function of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static double signum(double d) {
- return sun.misc.FpUtils.signum(d);
- }
-
- /**
- * Returns the signum function of the argument; zero if the argument
- * is zero, 1.0f if the argument is greater than zero, -1.0f if the
- * argument is less than zero.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive zero or negative zero, then the
- * result is the same as the argument.
- * </ul>
- *
- * @param f the floating-point value whose signum is to be returned
- * @return the signum function of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static float signum(float f) {
- return sun.misc.FpUtils.signum(f);
- }
-
- /**
- * Returns the hyperbolic sine of a <code>double</code> value.
- * The hyperbolic sine of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2
- * where <i>e</i> is {@linkplain Math#E Euler's number}.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 2.5 ulps of the exact result.
- *
- * @param x The number whose hyperbolic sine is to be returned.
- * @return The hyperbolic sine of <code>x</code>.
- * @since 1.5
- */
- public static double sinh(double x) {
- return StrictMath.sinh(x);
- }
-
- /**
- * Returns the hyperbolic cosine of a <code>double</code> value.
- * The hyperbolic cosine of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2
- * where <i>e</i> is {@linkplain Math#E Euler's number}.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is positive
- * infinity.
- *
- * <li>If the argument is zero, then the result is <code>1.0</code>.
- *
- * </ul>
- *
- * <p>The computed result must be within 2.5 ulps of the exact result.
- *
- * @param x The number whose hyperbolic cosine is to be returned.
- * @return The hyperbolic cosine of <code>x</code>.
- * @since 1.5
- */
- public static double cosh(double x) {
- return StrictMath.cosh(x);
- }
-
- /**
- * Returns the hyperbolic tangent of a <code>double</code> value.
- * The hyperbolic tangent of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>),
- * in other words, {@linkplain Math#sinh
- * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note
- * that the absolute value of the exact tanh is always less than
- * 1.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * <li>If the argument is positive infinity, then the result is
- * <code>+1.0</code>.
- *
- * <li>If the argument is negative infinity, then the result is
- * <code>-1.0</code>.
- *
- * </ul>
- *
- * <p>The computed result must be within 2.5 ulps of the exact result.
- * The result of <code>tanh</code> for any finite input must have
- * an absolute value less than or equal to 1. Note that once the
- * exact result of tanh is within 1/2 of an ulp of the limit value
- * of ±1, correctly signed ±<code>1.0</code> should
- * be returned.
- *
- * @param x The number whose hyperbolic tangent is to be returned.
- * @return The hyperbolic tangent of <code>x</code>.
- * @since 1.5
- */
- public static double tanh(double x) {
- return StrictMath.tanh(x);
- }
-
- /**
- * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * without intermediate overflow or underflow.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li> If either argument is infinite, then the result
- * is positive infinity.
- *
- * <li> If either argument is NaN and neither argument is infinite,
- * then the result is NaN.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact
- * result. If one parameter is held constant, the results must be
- * semi-monotonic in the other parameter.
- *
- * @param x a value
- * @param y a value
- * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * without intermediate overflow or underflow
- * @since 1.5
- */
- public static double hypot(double x, double y) {
- return StrictMath.hypot(x, y);
- }
-
- /**
- * Returns <i>e</i><sup>x</sup> -1. Note that for values of
- * <i>x</i> near 0, the exact sum of
- * <code>expm1(x)</code> + 1 is much closer to the true
- * result of <i>e</i><sup>x</sup> than <code>exp(x)</code>.
- *
- * <p>Special cases:
- * <ul>
- * <li>If the argument is NaN, the result is NaN.
- *
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- *
- * <li>If the argument is negative infinity, then the result is
- * -1.0.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic. The result of
- * <code>expm1</code> for any finite input must be greater than or
- * equal to <code>-1.0</code>. Note that once the exact result of
- * <i>e</i><sup><code>x</code></sup> - 1 is within 1/2
- * ulp of the limit value -1, <code>-1.0</code> should be
- * returned.
- *
- * @param x the exponent to raise <i>e</i> to in the computation of
- * <i>e</i><sup><code>x</code></sup> -1.
- * @return the value <i>e</i><sup><code>x</code></sup> - 1.
- */
- public static double expm1(double x) {
- return StrictMath.expm1(x);
- }
-
- /**
- * Returns the natural logarithm of the sum of the argument and 1.
- * Note that for small values <code>x</code>, the result of
- * <code>log1p(x)</code> is much closer to the true result of ln(1
- * + <code>x</code>) than the floating-point evaluation of
- * <code>log(1.0+x)</code>.
- *
- * <p>Special cases:
- *
- * <ul>
- *
- * <li>If the argument is NaN or less than -1, then the result is
- * NaN.
- *
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- *
- * <li>If the argument is negative one, then the result is
- * negative infinity.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param x a value
- * @return the value ln(<code>x</code> + 1), the natural
- * log of <code>x</code> + 1
- */
- public static double log1p(double x) {
- return StrictMath.log1p(x);
- }
- }