- /*
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- /*
- * @(#)BitSieve.java 1.10 03/12/19
- */
-
- package java.math;
-
- /**
- * A simple bit sieve used for finding prime number candidates. Allows setting
- * and clearing of bits in a storage array. The size of the sieve is assumed to
- * be constant to reduce overhead. All the bits of a new bitSieve are zero, and
- * bits are removed from it by setting them.
- *
- * To reduce storage space and increase efficiency, no even numbers are
- * represented in the sieve (each bit in the sieve represents an odd number).
- * The relationship between the index of a bit and the number it represents is
- * given by
- * N = offset + (2*index + 1);
- * Where N is the integer represented by a bit in the sieve, offset is some
- * even integer offset indicating where the sieve begins, and index is the
- * index of a bit in the sieve array.
- *
- * @see BigInteger
- * @version 1.10, 12/19/03
- * @author Michael McCloskey
- * @since 1.3
- */
- class BitSieve {
- /**
- * Stores the bits in this bitSieve.
- */
- private long bits[];
-
- /**
- * Length is how many bits this sieve holds.
- */
- private int length;
-
- /**
- * A small sieve used to filter out multiples of small primes in a search
- * sieve.
- */
- private static BitSieve smallSieve = new BitSieve();
-
- /**
- * Construct a "small sieve" with a base of 0. This constructor is
- * used internally to generate the set of "small primes" whose multiples
- * are excluded from sieves generated by the main (package private)
- * constructor, BitSieve(BigInteger base, int searchLen). The length
- * of the sieve generated by this constructor was chosen for performance;
- * it controls a tradeoff between how much time is spent constructing
- * other sieves, and how much time is wasted testing composite candidates
- * for primality. The length was chosen experimentally to yield good
- * performance.
- */
- private BitSieve() {
- length = 150 * 64;
- bits = new long[(unitIndex(length - 1) + 1)];
-
- // Mark 1 as composite
- set(0);
- int nextIndex = 1;
- int nextPrime = 3;
-
- // Find primes and remove their multiples from sieve
- do {
- sieveSingle(length, nextIndex + nextPrime, nextPrime);
- nextIndex = sieveSearch(length, nextIndex + 1);
- nextPrime = 2*nextIndex + 1;
- } while((nextIndex > 0) && (nextPrime < length));
- }
-
- /**
- * Construct a bit sieve of searchLen bits used for finding prime number
- * candidates. The new sieve begins at the specified base, which must
- * be even.
- */
- BitSieve(BigInteger base, int searchLen) {
- /*
- * Candidates are indicated by clear bits in the sieve. As a candidates
- * nonprimality is calculated, a bit is set in the sieve to eliminate
- * it. To reduce storage space and increase efficiency, no even numbers
- * are represented in the sieve (each bit in the sieve represents an
- * odd number).
- */
- bits = new long[(unitIndex(searchLen-1) + 1)];
- length = searchLen;
- int start = 0;
-
- int step = smallSieve.sieveSearch(smallSieve.length, start);
- int convertedStep = (step *2) + 1;
-
- // Construct the large sieve at an even offset specified by base
- MutableBigInteger r = new MutableBigInteger();
- MutableBigInteger q = new MutableBigInteger();
- do {
- // Calculate base mod convertedStep
- r.copyValue(base.mag);
- r.divideOneWord(convertedStep, q);
- start = r.value[r.offset];
-
- // Take each multiple of step out of sieve
- start = convertedStep - start;
- if (start%2 == 0)
- start += convertedStep;
- sieveSingle(searchLen, (start-1)/2, convertedStep);
-
- // Find next prime from small sieve
- step = smallSieve.sieveSearch(smallSieve.length, step+1);
- convertedStep = (step *2) + 1;
- } while (step > 0);
- }
-
- /**
- * Given a bit index return unit index containing it.
- */
- private static int unitIndex(int bitIndex) {
- return bitIndex >>> 6;
- }
-
- /**
- * Return a unit that masks the specified bit in its unit.
- */
- private static long bit(int bitIndex) {
- return 1L << (bitIndex & ((1<<6) - 1));
- }
-
- /**
- * Get the value of the bit at the specified index.
- */
- private boolean get(int bitIndex) {
- int unitIndex = unitIndex(bitIndex);
- return ((bits[unitIndex] & bit(bitIndex)) != 0);
- }
-
- /**
- * Set the bit at the specified index.
- */
- private void set(int bitIndex) {
- int unitIndex = unitIndex(bitIndex);
- bits[unitIndex] |= bit(bitIndex);
- }
-
- /**
- * This method returns the index of the first clear bit in the search
- * array that occurs at or after start. It will not search past the
- * specified limit. It returns -1 if there is no such clear bit.
- */
- private int sieveSearch(int limit, int start) {
- if (start >= limit)
- return -1;
-
- int index = start;
- do {
- if (!get(index))
- return index;
- index++;
- } while(index < limit-1);
- return -1;
- }
-
- /**
- * Sieve a single set of multiples out of the sieve. Begin to remove
- * multiples of the specified step starting at the specified start index,
- * up to the specified limit.
- */
- private void sieveSingle(int limit, int start, int step) {
- while(start < limit) {
- set(start);
- start += step;
- }
- }
-
- /**
- * Test probable primes in the sieve and return successful candidates.
- */
- BigInteger retrieve(BigInteger initValue, int certainty) {
- // Examine the sieve one long at a time to find possible primes
- int offset = 1;
- for (int i=0; i<bits.length; i++) {
- long nextLong = ~bits[i];
- for (int j=0; j<64; j++) {
- if ((nextLong & 1) == 1) {
- BigInteger candidate = initValue.add(
- BigInteger.valueOf(offset));
- if (candidate.primeToCertainty(certainty))
- return candidate;
- }
- nextLong >>>= 1;
- offset+=2;
- }
- }
- return null;
- }
- }