- /*
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- /*
- * @(#)MutableBigInteger.java 1.12 03/12/19
- */
-
- package java.math;
-
- /**
- * A class used to represent multiprecision integers that makes efficient
- * use of allocated space by allowing a number to occupy only part of
- * an array so that the arrays do not have to be reallocated as often.
- * When performing an operation with many iterations the array used to
- * hold a number is only reallocated when necessary and does not have to
- * be the same size as the number it represents. A mutable number allows
- * calculations to occur on the same number without having to create
- * a new number for every step of the calculation as occurs with
- * BigIntegers.
- *
- * @see BigInteger
- * @version 1.12, 12/19/03
- * @author Michael McCloskey
- * @since 1.3
- */
-
- class MutableBigInteger {
- /**
- * Holds the magnitude of this MutableBigInteger in big endian order.
- * The magnitude may start at an offset into the value array, and it may
- * end before the length of the value array.
- */
- int[] value;
-
- /**
- * The number of ints of the value array that are currently used
- * to hold the magnitude of this MutableBigInteger. The magnitude starts
- * at an offset and offset + intLen may be less than value.length.
- */
- int intLen;
-
- /**
- * The offset into the value array where the magnitude of this
- * MutableBigInteger begins.
- */
- int offset = 0;
-
- /**
- * This mask is used to obtain the value of an int as if it were unsigned.
- */
- private final static long LONG_MASK = 0xffffffffL;
-
- // Constructors
-
- /**
- * The default constructor. An empty MutableBigInteger is created with
- * a one word capacity.
- */
- MutableBigInteger() {
- value = new int[1];
- intLen = 0;
- }
-
- /**
- * Construct a new MutableBigInteger with a magnitude specified by
- * the int val.
- */
- MutableBigInteger(int val) {
- value = new int[1];
- intLen = 1;
- value[0] = val;
- }
-
- /**
- * Construct a new MutableBigInteger with the specified value array
- * up to the specified length.
- */
- MutableBigInteger(int[] val, int len) {
- value = val;
- intLen = len;
- }
-
- /**
- * Construct a new MutableBigInteger with the specified value array
- * up to the length of the array supplied.
- */
- MutableBigInteger(int[] val) {
- value = val;
- intLen = val.length;
- }
-
- /**
- * Construct a new MutableBigInteger with a magnitude equal to the
- * specified BigInteger.
- */
- MutableBigInteger(BigInteger b) {
- value = (int[]) b.mag.clone();
- intLen = value.length;
- }
-
- /**
- * Construct a new MutableBigInteger with a magnitude equal to the
- * specified MutableBigInteger.
- */
- MutableBigInteger(MutableBigInteger val) {
- intLen = val.intLen;
- value = new int[intLen];
-
- for(int i=0; i<intLen; i++)
- value[i] = val.value[val.offset+i];
- }
-
- /**
- * Clear out a MutableBigInteger for reuse.
- */
- void clear() {
- offset = intLen = 0;
- for (int index=0, n=value.length; index < n; index++)
- value[index] = 0;
- }
-
- /**
- * Set a MutableBigInteger to zero, removing its offset.
- */
- void reset() {
- offset = intLen = 0;
- }
-
- /**
- * Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
- * as this MutableBigInteger is numerically less than, equal to, or
- * greater than <tt>b</tt>.
- */
- final int compare(MutableBigInteger b) {
- if (intLen < b.intLen)
- return -1;
- if (intLen > b.intLen)
- return 1;
-
- for (int i=0; i<intLen; i++) {
- int b1 = value[offset+i] + 0x80000000;
- int b2 = b.value[b.offset+i] + 0x80000000;
- if (b1 < b2)
- return -1;
- if (b1 > b2)
- return 1;
- }
- return 0;
- }
-
- /**
- * Return the index of the lowest set bit in this MutableBigInteger. If the
- * magnitude of this MutableBigInteger is zero, -1 is returned.
- */
- private final int getLowestSetBit() {
- if (intLen == 0)
- return -1;
- int j, b;
- for (j=intLen-1; (j>0) && (value[j+offset]==0); j--)
- ;
- b = value[j+offset];
- if (b==0)
- return -1;
- return ((intLen-1-j)<<5) + BigInteger.trailingZeroCnt(b);
- }
-
- /**
- * Return the int in use in this MutableBigInteger at the specified
- * index. This method is not used because it is not inlined on all
- * platforms.
- */
- private final int getInt(int index) {
- return value[offset+index];
- }
-
- /**
- * Return a long which is equal to the unsigned value of the int in
- * use in this MutableBigInteger at the specified index. This method is
- * not used because it is not inlined on all platforms.
- */
- private final long getLong(int index) {
- return value[offset+index] & LONG_MASK;
- }
-
- /**
- * Ensure that the MutableBigInteger is in normal form, specifically
- * making sure that there are no leading zeros, and that if the
- * magnitude is zero, then intLen is zero.
- */
- final void normalize() {
- if (intLen == 0) {
- offset = 0;
- return;
- }
-
- int index = offset;
- if (value[index] != 0)
- return;
-
- int indexBound = index+intLen;
- do {
- index++;
- } while(index < indexBound && value[index]==0);
-
- int numZeros = index - offset;
- intLen -= numZeros;
- offset = (intLen==0 ? 0 : offset+numZeros);
- }
-
- /**
- * If this MutableBigInteger cannot hold len words, increase the size
- * of the value array to len words.
- */
- private final void ensureCapacity(int len) {
- if (value.length < len) {
- value = new int[len];
- offset = 0;
- intLen = len;
- }
- }
-
- /**
- * Convert this MutableBigInteger into an int array with no leading
- * zeros, of a length that is equal to this MutableBigInteger's intLen.
- */
- int[] toIntArray() {
- int[] result = new int[intLen];
- for(int i=0; i<intLen; i++)
- result[i] = value[offset+i];
- return result;
- }
-
- /**
- * Sets the int at index+offset in this MutableBigInteger to val.
- * This does not get inlined on all platforms so it is not used
- * as often as originally intended.
- */
- void setInt(int index, int val) {
- value[offset + index] = val;
- }
-
- /**
- * Sets this MutableBigInteger's value array to the specified array.
- * The intLen is set to the specified length.
- */
- void setValue(int[] val, int length) {
- value = val;
- intLen = length;
- offset = 0;
- }
-
- /**
- * Sets this MutableBigInteger's value array to a copy of the specified
- * array. The intLen is set to the length of the new array.
- */
- void copyValue(MutableBigInteger val) {
- int len = val.intLen;
- if (value.length < len)
- value = new int[len];
-
- for(int i=0; i<len; i++)
- value[i] = val.value[val.offset+i];
- intLen = len;
- offset = 0;
- }
-
- /**
- * Sets this MutableBigInteger's value array to a copy of the specified
- * array. The intLen is set to the length of the specified array.
- */
- void copyValue(int[] val) {
- int len = val.length;
- if (value.length < len)
- value = new int[len];
- for(int i=0; i<len; i++)
- value[i] = val[i];
- intLen = len;
- offset = 0;
- }
-
- /**
- * Returns true iff this MutableBigInteger has a value of one.
- */
- boolean isOne() {
- return (intLen == 1) && (value[offset] == 1);
- }
-
- /**
- * Returns true iff this MutableBigInteger has a value of zero.
- */
- boolean isZero() {
- return (intLen == 0);
- }
-
- /**
- * Returns true iff this MutableBigInteger is even.
- */
- boolean isEven() {
- return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
- }
-
- /**
- * Returns true iff this MutableBigInteger is odd.
- */
- boolean isOdd() {
- return ((value[offset + intLen - 1] & 1) == 1);
- }
-
- /**
- * Returns true iff this MutableBigInteger is in normal form. A
- * MutableBigInteger is in normal form if it has no leading zeros
- * after the offset, and intLen + offset <= value.length.
- */
- boolean isNormal() {
- if (intLen + offset > value.length)
- return false;
- if (intLen ==0)
- return true;
- return (value[offset] != 0);
- }
-
- /**
- * Returns a String representation of this MutableBigInteger in radix 10.
- */
- public String toString() {
- BigInteger b = new BigInteger(this, 1);
- return b.toString();
- }
-
- /**
- * Right shift this MutableBigInteger n bits. The MutableBigInteger is left
- * in normal form.
- */
- void rightShift(int n) {
- if (intLen == 0)
- return;
- int nInts = n >>> 5;
- int nBits = n & 0x1F;
- this.intLen -= nInts;
- if (nBits == 0)
- return;
- int bitsInHighWord = BigInteger.bitLen(value[offset]);
- if (nBits >= bitsInHighWord) {
- this.primitiveLeftShift(32 - nBits);
- this.intLen--;
- } else {
- primitiveRightShift(nBits);
- }
- }
-
- /**
- * Left shift this MutableBigInteger n bits.
- */
- void leftShift(int n) {
- /*
- * If there is enough storage space in this MutableBigInteger already
- * the available space will be used. Space to the right of the used
- * ints in the value array is faster to utilize, so the extra space
- * will be taken from the right if possible.
- */
- if (intLen == 0)
- return;
- int nInts = n >>> 5;
- int nBits = n&0x1F;
- int bitsInHighWord = BigInteger.bitLen(value[offset]);
-
- // If shift can be done without moving words, do so
- if (n <= (32-bitsInHighWord)) {
- primitiveLeftShift(nBits);
- return;
- }
-
- int newLen = intLen + nInts +1;
- if (nBits <= (32-bitsInHighWord))
- newLen--;
- if (value.length < newLen) {
- // The array must grow
- int[] result = new int[newLen];
- for (int i=0; i<intLen; i++)
- result[i] = value[offset+i];
- setValue(result, newLen);
- } else if (value.length - offset >= newLen) {
- // Use space on right
- for(int i=0; i<newLen - intLen; i++)
- value[offset+intLen+i] = 0;
- } else {
- // Must use space on left
- for (int i=0; i<intLen; i++)
- value[i] = value[offset+i];
- for (int i=intLen; i<newLen; i++)
- value[i] = 0;
- offset = 0;
- }
- intLen = newLen;
- if (nBits == 0)
- return;
- if (nBits <= (32-bitsInHighWord))
- primitiveLeftShift(nBits);
- else
- primitiveRightShift(32 -nBits);
- }
-
- /**
- * A primitive used for division. This method adds in one multiple of the
- * divisor a back to the dividend result at a specified offset. It is used
- * when qhat was estimated too large, and must be adjusted.
- */
- private int divadd(int[] a, int[] result, int offset) {
- long carry = 0;
-
- for (int j=a.length-1; j >= 0; j--) {
- long sum = (a[j] & LONG_MASK) +
- (result[j+offset] & LONG_MASK) + carry;
- result[j+offset] = (int)sum;
- carry = sum >>> 32;
- }
- return (int)carry;
- }
-
- /**
- * This method is used for division. It multiplies an n word input a by one
- * word input x, and subtracts the n word product from q. This is needed
- * when subtracting qhat*divisor from dividend.
- */
- private int mulsub(int[] q, int[] a, int x, int len, int offset) {
- long xLong = x & LONG_MASK;
- long carry = 0;
- offset += len;
-
- for (int j=len-1; j >= 0; j--) {
- long product = (a[j] & LONG_MASK) * xLong + carry;
- long difference = q[offset] - product;
- q[offset--] = (int)difference;
- carry = (product >>> 32)
- + (((difference & LONG_MASK) >
- (((~(int)product) & LONG_MASK))) ? 1:0);
- }
- return (int)carry;
- }
-
- /**
- * Right shift this MutableBigInteger n bits, where n is
- * less than 32.
- * Assumes that intLen > 0, n > 0 for speed
- */
- private final void primitiveRightShift(int n) {
- int[] val = value;
- int n2 = 32 - n;
- for (int i=offset+intLen-1, c=val[i]; i>offset; i--) {
- int b = c;
- c = val[i-1];
- val[i] = (c << n2) | (b >>> n);
- }
- val[offset] >>>= n;
- }
-
- /**
- * Left shift this MutableBigInteger n bits, where n is
- * less than 32.
- * Assumes that intLen > 0, n > 0 for speed
- */
- private final void primitiveLeftShift(int n) {
- int[] val = value;
- int n2 = 32 - n;
- for (int i=offset, c=val[i], m=i+intLen-1; i<m; i++) {
- int b = c;
- c = val[i+1];
- val[i] = (b << n) | (c >>> n2);
- }
- val[offset+intLen-1] <<= n;
- }
-
- /**
- * Adds the contents of two MutableBigInteger objects.The result
- * is placed within this MutableBigInteger.
- * The contents of the addend are not changed.
- */
- void add(MutableBigInteger addend) {
- int x = intLen;
- int y = addend.intLen;
- int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
- int[] result = (value.length < resultLen ? new int[resultLen] : value);
-
- int rstart = result.length-1;
- long sum = 0;
-
- // Add common parts of both numbers
- while(x>0 && y>0) {
- x--; y--;
- sum = (value[x+offset] & LONG_MASK) +
- (addend.value[y+addend.offset] & LONG_MASK) + (sum >>> 32);
- result[rstart--] = (int)sum;
- }
-
- // Add remainder of the longer number
- while(x>0) {
- x--;
- sum = (value[x+offset] & LONG_MASK) + (sum >>> 32);
- result[rstart--] = (int)sum;
- }
- while(y>0) {
- y--;
- sum = (addend.value[y+addend.offset] & LONG_MASK) + (sum >>> 32);
- result[rstart--] = (int)sum;
- }
-
- if ((sum >>> 32) > 0) { // Result must grow in length
- resultLen++;
- if (result.length < resultLen) {
- int temp[] = new int[resultLen];
- for (int i=resultLen-1; i>0; i--)
- temp[i] = result[i-1];
- temp[0] = 1;
- result = temp;
- } else {
- result[rstart--] = 1;
- }
- }
-
- value = result;
- intLen = resultLen;
- offset = result.length - resultLen;
- }
-
-
- /**
- * Subtracts the smaller of this and b from the larger and places the
- * result into this MutableBigInteger.
- */
- int subtract(MutableBigInteger b) {
- MutableBigInteger a = this;
-
- int[] result = value;
- int sign = a.compare(b);
-
- if (sign == 0) {
- reset();
- return 0;
- }
- if (sign < 0) {
- MutableBigInteger tmp = a;
- a = b;
- b = tmp;
- }
-
- int resultLen = a.intLen;
- if (result.length < resultLen)
- result = new int[resultLen];
-
- long diff = 0;
- int x = a.intLen;
- int y = b.intLen;
- int rstart = result.length - 1;
-
- // Subtract common parts of both numbers
- while (y>0) {
- x--; y--;
-
- diff = (a.value[x+a.offset] & LONG_MASK) -
- (b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
- result[rstart--] = (int)diff;
- }
- // Subtract remainder of longer number
- while (x>0) {
- x--;
- diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
- result[rstart--] = (int)diff;
- }
-
- value = result;
- intLen = resultLen;
- offset = value.length - resultLen;
- normalize();
- return sign;
- }
-
- /**
- * Subtracts the smaller of a and b from the larger and places the result
- * into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
- * operation was performed.
- */
- private int difference(MutableBigInteger b) {
- MutableBigInteger a = this;
- int sign = a.compare(b);
- if (sign ==0)
- return 0;
- if (sign < 0) {
- MutableBigInteger tmp = a;
- a = b;
- b = tmp;
- }
-
- long diff = 0;
- int x = a.intLen;
- int y = b.intLen;
-
- // Subtract common parts of both numbers
- while (y>0) {
- x--; y--;
- diff = (a.value[a.offset+ x] & LONG_MASK) -
- (b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
- a.value[a.offset+x] = (int)diff;
- }
- // Subtract remainder of longer number
- while (x>0) {
- x--;
- diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
- a.value[a.offset+x] = (int)diff;
- }
-
- a.normalize();
- return sign;
- }
-
- /**
- * Multiply the contents of two MutableBigInteger objects. The result is
- * placed into MutableBigInteger z. The contents of y are not changed.
- */
- void multiply(MutableBigInteger y, MutableBigInteger z) {
- int xLen = intLen;
- int yLen = y.intLen;
- int newLen = xLen + yLen;
-
- // Put z into an appropriate state to receive product
- if (z.value.length < newLen)
- z.value = new int[newLen];
- z.offset = 0;
- z.intLen = newLen;
-
- // The first iteration is hoisted out of the loop to avoid extra add
- long carry = 0;
- for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
- long product = (y.value[j+y.offset] & LONG_MASK) *
- (value[xLen-1+offset] & LONG_MASK) + carry;
- z.value[k] = (int)product;
- carry = product >>> 32;
- }
- z.value[xLen-1] = (int)carry;
-
- // Perform the multiplication word by word
- for (int i = xLen-2; i >= 0; i--) {
- carry = 0;
- for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
- long product = (y.value[j+y.offset] & LONG_MASK) *
- (value[i+offset] & LONG_MASK) +
- (z.value[k] & LONG_MASK) + carry;
- z.value[k] = (int)product;
- carry = product >>> 32;
- }
- z.value[i] = (int)carry;
- }
-
- // Remove leading zeros from product
- z.normalize();
- }
-
- /**
- * Multiply the contents of this MutableBigInteger by the word y. The
- * result is placed into z.
- */
- void mul(int y, MutableBigInteger z) {
- if (y == 1) {
- z.copyValue(this);
- return;
- }
-
- if (y == 0) {
- z.clear();
- return;
- }
-
- // Perform the multiplication word by word
- long ylong = y & LONG_MASK;
- int[] zval = (z.value.length<intLen+1 ? new int[intLen + 1]
- : z.value);
- long carry = 0;
- for (int i = intLen-1; i >= 0; i--) {
- long product = ylong * (value[i+offset] & LONG_MASK) + carry;
- zval[i+1] = (int)product;
- carry = product >>> 32;
- }
-
- if (carry == 0) {
- z.offset = 1;
- z.intLen = intLen;
- } else {
- z.offset = 0;
- z.intLen = intLen + 1;
- zval[0] = (int)carry;
- }
- z.value = zval;
- }
-
- /**
- * This method is used for division of an n word dividend by a one word
- * divisor. The quotient is placed into quotient. The one word divisor is
- * specified by divisor. The value of this MutableBigInteger is the
- * dividend at invocation but is replaced by the remainder.
- *
- * NOTE: The value of this MutableBigInteger is modified by this method.
- */
- void divideOneWord(int divisor, MutableBigInteger quotient) {
- long divLong = divisor & LONG_MASK;
-
- // Special case of one word dividend
- if (intLen == 1) {
- long remValue = value[offset] & LONG_MASK;
- quotient.value[0] = (int) (remValue / divLong);
- quotient.intLen = (quotient.value[0] == 0) ? 0 : 1;
- quotient.offset = 0;
-
- value[0] = (int) (remValue - (quotient.value[0] * divLong));
- offset = 0;
- intLen = (value[0] == 0) ? 0 : 1;
-
- return;
- }
-
- if (quotient.value.length < intLen)
- quotient.value = new int[intLen];
- quotient.offset = 0;
- quotient.intLen = intLen;
-
- // Normalize the divisor
- int shift = 32 - BigInteger.bitLen(divisor);
-
- int rem = value[offset];
- long remLong = rem & LONG_MASK;
- if (remLong < divLong) {
- quotient.value[0] = 0;
- } else {
- quotient.value[0] = (int)(remLongdivLong);
- rem = (int) (remLong - (quotient.value[0] * divLong));
- remLong = rem & LONG_MASK;
- }
-
- int xlen = intLen;
- int[] qWord = new int[2];
- while (--xlen > 0) {
- long dividendEstimate = (remLong<<32) |
- (value[offset + intLen - xlen] & LONG_MASK);
- if (dividendEstimate >= 0) {
- qWord[0] = (int) (dividendEstimatedivLong);
- qWord[1] = (int) (dividendEstimate - (qWord[0] * divLong));
- } else {
- divWord(qWord, dividendEstimate, divisor);
- }
- quotient.value[intLen - xlen] = (int)qWord[0];
- rem = (int)qWord[1];
- remLong = rem & LONG_MASK;
- }
-
- // Unnormalize
- if (shift > 0)
- value[0] = rem %= divisor;
- else
- value[0] = rem;
- intLen = (value[0] == 0) ? 0 : 1;
-
- quotient.normalize();
- }
-
-
- /**
- * Calculates the quotient and remainder of this div b and places them
- * in the MutableBigInteger objects provided.
- *
- * Uses Algorithm D in Knuth section 4.3.1.
- * Many optimizations to that algorithm have been adapted from the Colin
- * Plumb C library.
- * It special cases one word divisors for speed.
- * The contents of a and b are not changed.
- *
- */
- void divide(MutableBigInteger b,
- MutableBigInteger quotient, MutableBigInteger rem) {
- if (b.intLen == 0)
- throw new ArithmeticException("BigInteger divide by zero");
-
- // Dividend is zero
- if (intLen == 0) {
- quotient.intLen = quotient.offset = rem.intLen = rem.offset = 0;
- return;
- }
-
- int cmp = compare(b);
-
- // Dividend less than divisor
- if (cmp < 0) {
- quotient.intLen = quotient.offset = 0;
- rem.copyValue(this);
- return;
- }
- // Dividend equal to divisor
- if (cmp == 0) {
- quotient.value[0] = quotient.intLen = 1;
- quotient.offset = rem.intLen = rem.offset = 0;
- return;
- }
-
- quotient.clear();
-
- // Special case one word divisor
- if (b.intLen == 1) {
- rem.copyValue(this);
- rem.divideOneWord(b.value[b.offset], quotient);
- return;
- }
-
- // Copy divisor value to protect divisor
- int[] d = new int[b.intLen];
- for(int i=0; i<b.intLen; i++)
- d[i] = b.value[b.offset+i];
- int dlen = b.intLen;
-
- // Remainder starts as dividend with space for a leading zero
- if (rem.value.length < intLen +1)
- rem.value = new int[intLen+1];
-
- for (int i=0; i<intLen; i++)
- rem.value[i+1] = value[i+offset];
- rem.intLen = intLen;
- rem.offset = 1;
-
- int nlen = rem.intLen;
-
- // Set the quotient size
- int limit = nlen - dlen + 1;
- if (quotient.value.length < limit) {
- quotient.value = new int[limit];
- quotient.offset = 0;
- }
- quotient.intLen = limit;
- int[] q = quotient.value;
-
- // D1 normalize the divisor
- int shift = 32 - BigInteger.bitLen(d[0]);
- if (shift > 0) {
- // First shift will not grow array
- BigInteger.primitiveLeftShift(d, dlen, shift);
- // But this one might
- rem.leftShift(shift);
- }
-
- // Must insert leading 0 in rem if its length did not change
- if (rem.intLen == nlen) {
- rem.offset = 0;
- rem.value[0] = 0;
- rem.intLen++;
- }
-
- int dh = d[0];
- long dhLong = dh & LONG_MASK;
- int dl = d[1];
- int[] qWord = new int[2];
-
- // D2 Initialize j
- for(int j=0; j<limit; j++) {
- // D3 Calculate qhat
- // estimate qhat
- int qhat = 0;
- int qrem = 0;
- boolean skipCorrection = false;
- int nh = rem.value[j+rem.offset];
- int nh2 = nh + 0x80000000;
- int nm = rem.value[j+1+rem.offset];
-
- if (nh == dh) {
- qhat = ~0;
- qrem = nh + nm;
- skipCorrection = qrem + 0x80000000 < nh2;
- } else {
- long nChunk = (((long)nh) << 32) | (nm & LONG_MASK);
- if (nChunk >= 0) {
- qhat = (int) (nChunk / dhLong);
- qrem = (int) (nChunk - (qhat * dhLong));
- } else {
- divWord(qWord, nChunk, dh);
- qhat = qWord[0];
- qrem = qWord[1];
- }
- }
-
- if (qhat == 0)
- continue;
-
- if (!skipCorrection) { // Correct qhat
- long nl = rem.value[j+2+rem.offset] & LONG_MASK;
- long rs = ((qrem & LONG_MASK) << 32) | nl;
- long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
-
- if (unsignedLongCompare(estProduct, rs)) {
- qhat--;
- qrem = (int)((qrem & LONG_MASK) + dhLong);
- if ((qrem & LONG_MASK) >= dhLong) {
- estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
- rs = ((qrem & LONG_MASK) << 32) | nl;
- if (unsignedLongCompare(estProduct, rs))
- qhat--;
- }
- }
- }
-
- // D4 Multiply and subtract
- rem.value[j+rem.offset] = 0;
- int borrow = mulsub(rem.value, d, qhat, dlen, j+rem.offset);
-
- // D5 Test remainder
- if (borrow + 0x80000000 > nh2) {
- // D6 Add back
- divadd(d, rem.value, j+1+rem.offset);
- qhat--;
- }
-
- // Store the quotient digit
- q[j] = qhat;
- } // D7 loop on j
-
- // D8 Unnormalize
- if (shift > 0)
- rem.rightShift(shift);
-
- rem.normalize();
- quotient.normalize();
- }
-
- /**
- * Compare two longs as if they were unsigned.
- * Returns true iff one is bigger than two.
- */
- private boolean unsignedLongCompare(long one, long two) {
- return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
- }
-
- /**
- * This method divides a long quantity by an int to estimate
- * qhat for two multi precision numbers. It is used when
- * the signed value of n is less than zero.
- */
- private void divWord(int[] result, long n, int d) {
- long dLong = d & LONG_MASK;
-
- if (dLong == 1) {
- result[0] = (int)n;
- result[1] = 0;
- return;
- }
-
- // Approximate the quotient and remainder
- long q = (n >>> 1) / (dLong >>> 1);
- long r = n - q*dLong;
-
- // Correct the approximation
- while (r < 0) {
- r += dLong;
- q--;
- }
- while (r >= dLong) {
- r -= dLong;
- q++;
- }
-
- // n - q*dlong == r && 0 <= r <dLong, hence we're done.
- result[0] = (int)q;
- result[1] = (int)r;
- }
-
- /**
- * Calculate GCD of this and b. This and b are changed by the computation.
- */
- MutableBigInteger hybridGCD(MutableBigInteger b) {
- // Use Euclid's algorithm until the numbers are approximately the
- // same length, then use the binary GCD algorithm to find the GCD.
- MutableBigInteger a = this;
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger();
-
- while (b.intLen != 0) {
- if (Math.abs(a.intLen - b.intLen) < 2)
- return a.binaryGCD(b);
-
- a.divide(b, q, r);
- MutableBigInteger swapper = a;
- a = b; b = r; r = swapper;
- }
- return a;
- }
-
- /**
- * Calculate GCD of this and v.
- * Assumes that this and v are not zero.
- */
- private MutableBigInteger binaryGCD(MutableBigInteger v) {
- // Algorithm B from Knuth section 4.5.2
- MutableBigInteger u = this;
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger();
-
- // step B1
- int s1 = u.getLowestSetBit();
- int s2 = v.getLowestSetBit();
- int k = (s1 < s2) ? s1 : s2;
- if (k != 0) {
- u.rightShift(k);
- v.rightShift(k);
- }
-
- // step B2
- boolean uOdd = (k==s1);
- MutableBigInteger t = uOdd ? v: u;
- int tsign = uOdd ? -1 : 1;
-
- int lb;
- while ((lb = t.getLowestSetBit()) >= 0) {
- // steps B3 and B4
- t.rightShift(lb);
- // step B5
- if (tsign > 0)
- u = t;
- else
- v = t;
-
- // Special case one word numbers
- if (u.intLen < 2 && v.intLen < 2) {
- int x = u.value[u.offset];
- int y = v.value[v.offset];
- x = binaryGcd(x, y);
- r.value[0] = x;
- r.intLen = 1;
- r.offset = 0;
- if (k > 0)
- r.leftShift(k);
- return r;
- }
-
- // step B6
- if ((tsign = u.difference(v)) == 0)
- break;
- t = (tsign >= 0) ? u : v;
- }
-
- if (k > 0)
- u.leftShift(k);
- return u;
- }
-
- /**
- * Calculate GCD of a and b interpreted as unsigned integers.
- */
- static int binaryGcd(int a, int b) {
- if (b==0)
- return a;
- if (a==0)
- return b;
-
- int x;
- int aZeros = 0;
- while ((x = (int)a & 0xff) == 0) {
- a >>>= 8;
- aZeros += 8;
- }
- int y = BigInteger.trailingZeroTable[x];
- aZeros += y;
- a >>>= y;
-
- int bZeros = 0;
- while ((x = (int)b & 0xff) == 0) {
- b >>>= 8;
- bZeros += 8;
- }
- y = BigInteger.trailingZeroTable[x];
- bZeros += y;
- b >>>= y;
-
- int t = (aZeros < bZeros ? aZeros : bZeros);
-
- while (a != b) {
- if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned
- a -= b;
-
- while ((x = (int)a & 0xff) == 0)
- a >>>= 8;
- a >>>= BigInteger.trailingZeroTable[x];
- } else {
- b -= a;
-
- while ((x = (int)b & 0xff) == 0)
- b >>>= 8;
- b >>>= BigInteger.trailingZeroTable[x];
- }
- }
- return a<<t;
- }
-
- /**
- * Returns the modInverse of this mod p. This and p are not affected by
- * the operation.
- */
- MutableBigInteger mutableModInverse(MutableBigInteger p) {
- // Modulus is odd, use Schroeppel's algorithm
- if (p.isOdd())
- return modInverse(p);
-
- // Base and modulus are even, throw exception
- if (isEven())
- throw new ArithmeticException("BigInteger not invertible.");
-
- // Get even part of modulus expressed as a power of 2
- int powersOf2 = p.getLowestSetBit();
-
- // Construct odd part of modulus
- MutableBigInteger oddMod = new MutableBigInteger(p);
- oddMod.rightShift(powersOf2);
-
- if (oddMod.isOne())
- return modInverseMP2(powersOf2);
-
- // Calculate 1/a mod oddMod
- MutableBigInteger oddPart = modInverse(oddMod);
-
- // Calculate 1/a mod evenMod
- MutableBigInteger evenPart = modInverseMP2(powersOf2);
-
- // Combine the results using Chinese Remainder Theorem
- MutableBigInteger y1 = modInverseBP2(oddMod, powersOf2);
- MutableBigInteger y2 = oddMod.modInverseMP2(powersOf2);
-
- MutableBigInteger temp1 = new MutableBigInteger();
- MutableBigInteger temp2 = new MutableBigInteger();
- MutableBigInteger result = new MutableBigInteger();
-
- oddPart.leftShift(powersOf2);
- oddPart.multiply(y1, result);
-
- evenPart.multiply(oddMod, temp1);
- temp1.multiply(y2, temp2);
-
- result.add(temp2);
- result.divide(p, temp1, temp2);
- return temp2;
- }
-
- /*
- * Calculate the multiplicative inverse of this mod 2^k.
- */
- MutableBigInteger modInverseMP2(int k) {
- if (isEven())
- throw new ArithmeticException("Non-invertible. (GCD != 1)");
-
- if (k > 64)
- return euclidModInverse(k);
-
- int t = inverseMod32(value[offset+intLen-1]);
-
- if (k < 33) {
- t = (k == 32 ? t : t & ((1 << k) - 1));
- return new MutableBigInteger(t);
- }
-
- long pLong = (value[offset+intLen-1] & LONG_MASK);
- if (intLen > 1)
- pLong |= ((long)value[offset+intLen-2] << 32);
- long tLong = t & LONG_MASK;
- tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step
- tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1));
-
- MutableBigInteger result = new MutableBigInteger(new int[2]);
- result.value[0] = (int)(tLong >>> 32);
- result.value[1] = (int)tLong;
- result.intLen = 2;
- result.normalize();
- return result;
- }
-
- /*
- * Returns the multiplicative inverse of val mod 2^32. Assumes val is odd.
- */
- static int inverseMod32(int val) {
- // Newton's iteration!
- int t = val;
- t *= 2 - val*t;
- t *= 2 - val*t;
- t *= 2 - val*t;
- t *= 2 - val*t;
- return t;
- }
-
- /*
- * Calculate the multiplicative inverse of 2^k mod mod, where mod is odd.
- */
- static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) {
- // Copy the mod to protect original
- return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k);
- }
-
- /**
- * Calculate the multiplicative inverse of this mod mod, where mod is odd.
- * This and mod are not changed by the calculation.
- *
- * This method implements an algorithm due to Richard Schroeppel, that uses
- * the same intermediate representation as Montgomery Reduction
- * ("Montgomery Form"). The algorithm is described in an unpublished
- * manuscript entitled "Fast Modular Reciprocals."
- */
- private MutableBigInteger modInverse(MutableBigInteger mod) {
- MutableBigInteger p = new MutableBigInteger(mod);
- MutableBigInteger f = new MutableBigInteger(this);
- MutableBigInteger g = new MutableBigInteger(p);
- SignedMutableBigInteger c = new SignedMutableBigInteger(1);
- SignedMutableBigInteger d = new SignedMutableBigInteger();
- MutableBigInteger temp = null;
- SignedMutableBigInteger sTemp = null;
-
- int k = 0;
- // Right shift f k times until odd, left shift d k times
- if (f.isEven()) {
- int trailingZeros = f.getLowestSetBit();
- f.rightShift(trailingZeros);
- d.leftShift(trailingZeros);
- k = trailingZeros;
- }
-
- // The Almost Inverse Algorithm
- while(!f.isOne()) {
- // If gcd(f, g) != 1, number is not invertible modulo mod
- if (f.isZero())
- throw new ArithmeticException("BigInteger not invertible.");
-
- // If f < g exchange f, g and c, d
- if (f.compare(g) < 0) {
- temp = f; f = g; g = temp;
- sTemp = d; d = c; c = sTemp;
- }
-
- // If f == g (mod 4)
- if (((f.value[f.offset + f.intLen - 1] ^
- g.value[g.offset + g.intLen - 1]) & 3) == 0) {
- f.subtract(g);
- c.signedSubtract(d);
- } else { // If f != g (mod 4)
- f.add(g);
- c.signedAdd(d);
- }
-
- // Right shift f k times until odd, left shift d k times
- int trailingZeros = f.getLowestSetBit();
- f.rightShift(trailingZeros);
- d.leftShift(trailingZeros);
- k += trailingZeros;
- }
-
- while (c.sign < 0)
- c.signedAdd(p);
-
- return fixup(c, p, k);
- }
-
- /*
- * The Fixup Algorithm
- * Calculates X such that X = C * 2^(-k) (mod P)
- * Assumes C<P and P is odd.
- */
- static MutableBigInteger fixup(MutableBigInteger c, MutableBigInteger p,
- int k) {
- MutableBigInteger temp = new MutableBigInteger();
- // Set r to the multiplicative inverse of p mod 2^32
- int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
-
- for(int i=0, numWords = k >> 5; i<numWords; i++) {
- // V = R * c (mod 2^j)
- int v = r * c.value[c.offset + c.intLen-1];
- // c = c + (v * p)
- p.mul(v, temp);
- c.add(temp);
- // c = c / 2^j
- c.intLen--;
- }
- int numBits = k & 0x1f;
- if (numBits != 0) {
- // V = R * c (mod 2^j)
- int v = r * c.value[c.offset + c.intLen-1];
- v &= ((1<<numBits) - 1);
- // c = c + (v * p)
- p.mul(v, temp);
- c.add(temp);
- // c = c / 2^j
- c.rightShift(numBits);
- }
-
- // In theory, c may be greater than p at this point (Very rare!)
- while (c.compare(p) >= 0)
- c.subtract(p);
-
- return c;
- }
-
- /**
- * Uses the extended Euclidean algorithm to compute the modInverse of base
- * mod a modulus that is a power of 2. The modulus is 2^k.
- */
- MutableBigInteger euclidModInverse(int k) {
- MutableBigInteger b = new MutableBigInteger(1);
- b.leftShift(k);
- MutableBigInteger mod = new MutableBigInteger(b);
-
- MutableBigInteger a = new MutableBigInteger(this);
- MutableBigInteger q = new MutableBigInteger();
- MutableBigInteger r = new MutableBigInteger();
-
- b.divide(a, q, r);
- MutableBigInteger swapper = b; b = r; r = swapper;
-
- MutableBigInteger t1 = new MutableBigInteger(q);
- MutableBigInteger t0 = new MutableBigInteger(1);
- MutableBigInteger temp = new MutableBigInteger();
-
- while (!b.isOne()) {
- a.divide(b, q, r);
-
- if (r.intLen == 0)
- throw new ArithmeticException("BigInteger not invertible.");
-
- swapper = r; r = a; a = swapper;
-
- if (q.intLen == 1)
- t1.mul(q.value[q.offset], temp);
- else
- q.multiply(t1, temp);
- swapper = q; q = temp; temp = swapper;
-
- t0.add(q);
-
- if (a.isOne())
- return t0;
-
- b.divide(a, q, r);
-
- if (r.intLen == 0)
- throw new ArithmeticException("BigInteger not invertible.");
-
- swapper = b; b = r; r = swapper;
-
- if (q.intLen == 1)
- t0.mul(q.value[q.offset], temp);
- else
- q.multiply(t0, temp);
- swapper = q; q = temp; temp = swapper;
-
- t1.add(q);
- }
- mod.subtract(t1);
- return mod;
- }
-
- }