- /*
- * @(#)DigitList.java 1.24 00/01/19
- *
- * Copyright 1996-2000 Sun Microsystems, Inc. All Rights Reserved.
- *
- * This software is the proprietary information of Sun Microsystems, Inc.
- * Use is subject to license terms.
- *
- */
-
- /*
- * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
- * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
- *
- * The original version of this source code and documentation is copyrighted
- * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
- * materials are provided under terms of a License Agreement between Taligent
- * and Sun. This technology is protected by multiple US and International
- * patents. This notice and attribution to Taligent may not be removed.
- * Taligent is a registered trademark of Taligent, Inc.
- *
- */
-
- package java.text;
-
- /**
- * Digit List. Private to DecimalFormat.
- * Handles the transcoding
- * between numeric values and strings of characters. Only handles
- * non-negative numbers. The division of labor between DigitList and
- * DecimalFormat is that DigitList handles the radix 10 representation
- * issues; DecimalFormat handles the locale-specific issues such as
- * positive/negative, grouping, decimal point, currency, and so on.
- *
- * A DigitList is really a representation of a floating point value.
- * It may be an integer value; we assume that a double has sufficient
- * precision to represent all digits of a long.
- *
- * The DigitList representation consists of a string of characters,
- * which are the digits radix 10, from '0' to '9'. It also has a radix
- * 10 exponent associated with it. The value represented by a DigitList
- * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
- * derived by placing all the digits of the list to the right of the
- * decimal point, by 10^exponent.
- *
- * @see Locale
- * @see Format
- * @see NumberFormat
- * @see DecimalFormat
- * @see ChoiceFormat
- * @see MessageFormat
- * @version 1.24 01/19/00
- * @author Mark Davis, Alan Liu
- */
- final class DigitList implements Cloneable {
- /**
- * The maximum number of significant digits in an IEEE 754 double, that
- * is, in a Java double. This must not be increased, or garbage digits
- * will be generated, and should not be decreased, or accuracy will be lost.
- */
- public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
- public static final int DBL_DIG = 17;
-
- /**
- * These data members are intentionally public and can be set directly.
- *
- * The value represented is given by placing the decimal point before
- * digits[decimalAt]. If decimalAt is < 0, then leading zeros between
- * the decimal point and the first nonzero digit are implied. If decimalAt
- * is > count, then trailing zeros between the digits[count-1] and the
- * decimal point are implied.
- *
- * Equivalently, the represented value is given by f * 10^decimalAt. Here
- * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
- * the right of the decimal.
- *
- * DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
- * don't allow denormalized numbers because our exponent is effectively of
- * unlimited magnitude. The count value contains the number of significant
- * digits present in digits[].
- *
- * Zero is represented by any DigitList with count == 0 or with each digits[i]
- * for all i <= count == '0'.
- */
- public int decimalAt = 0;
- public int count = 0;
- public byte[] digits = new byte[MAX_COUNT];
-
- /**
- * Return true if the represented number is zero.
- */
- boolean isZero()
- {
- for (int i=0; i<count; ++i) if (digits[i] != '0') return false;
- return true;
- }
-
- /**
- * Clears out the digits.
- * Use before appending them.
- * Typically, you set a series of digits with append, then at the point
- * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
- * then go on appending digits.
- */
- public void clear () {
- decimalAt = 0;
- count = 0;
- }
- /**
- * Appends digits to the list. Ignores all digits over MAX_COUNT,
- * since they are not significant for either longs or doubles.
- */
- public void append (int digit) {
- if (count < MAX_COUNT)
- digits[count++] = (byte) digit;
- }
- /**
- * Utility routine to get the value of the digit list
- * If (count == 0) this throws a NumberFormatException, which
- * mimics Long.parseLong().
- */
- public final double getDouble() {
- if (count == 0) return 0.0;
- StringBuffer temp = new StringBuffer(count);
- temp.append('.');
- for (int i = 0; i < count; ++i) temp.append((char)(digits[i]));
- temp.append('E');
- temp.append(Integer.toString(decimalAt));
- return Double.valueOf(temp.toString()).doubleValue();
- // long value = Long.parseLong(temp.toString());
- // return (value * Math.pow(10, decimalAt - count));
- }
-
- /**
- * Utility routine to get the value of the digit list.
- * If (count == 0) this returns 0, unlike Long.parseLong().
- */
- public final long getLong() {
- // for now, simple implementation; later, do proper IEEE native stuff
-
- if (count == 0) return 0;
-
- // We have to check for this, because this is the one NEGATIVE value
- // we represent. If we tried to just pass the digits off to parseLong,
- // we'd get a parse failure.
- if (isLongMIN_VALUE()) return Long.MIN_VALUE;
-
- StringBuffer temp = new StringBuffer(count);
- for (int i = 0; i < decimalAt; ++i)
- {
- temp.append((i < count) ? (char)(digits[i]) : '0');
- }
- return Long.parseLong(temp.toString());
- }
-
- /**
- * Return true if the number represented by this object can fit into
- * a long.
- * @param isPositive true if this number should be regarded as positive
- * @param ignoreNegativeZero true if -0 should be regarded as identical to
- * +0; otherwise they are considered distinct
- * @return true if this number fits into a Java long
- */
- boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero)
- {
- // Figure out if the result will fit in a long. We have to
- // first look for nonzero digits after the decimal point;
- // then check the size. If the digit count is 18 or less, then
- // the value can definitely be represented as a long. If it is 19
- // then it may be too large.
-
- // Trim trailing zeros. This does not change the represented value.
- while (count > 0 && digits[count - 1] == (byte)'0') --count;
-
- if (count == 0) {
- // Positive zero fits into a long, but negative zero can only
- // be represented as a double. - bug 4162852
- return isPositive || ignoreNegativeZero;
- }
-
- if (decimalAt < count || decimalAt > MAX_COUNT) return false;
-
- if (decimalAt < MAX_COUNT) return true;
-
- // At this point we have decimalAt == count, and count == MAX_COUNT.
- // The number will overflow if it is larger than 9223372036854775807
- // or smaller than -9223372036854775808.
- for (int i=0; i<count; ++i)
- {
- byte dig = digits[i], max = LONG_MIN_REP[i];
- if (dig > max) return false;
- if (dig < max) return true;
- }
-
- // At this point the first count digits match. If decimalAt is less
- // than count, then the remaining digits are zero, and we return true.
- if (count < decimalAt) return true;
-
- // Now we have a representation of Long.MIN_VALUE, without the leading
- // negative sign. If this represents a positive value, then it does
- // not fit; otherwise it fits.
- return !isPositive;
- }
-
- private static final boolean DEBUG = false;
-
- /**
- * Set the digit list to a representation of the given double value.
- * This method supports fixed-point notation.
- * @param source Value to be converted; must not be Inf, -Inf, Nan,
- * or a value <= 0.
- * @param maximumFractionDigits The most fractional digits which should
- * be converted.
- */
- public final void set(double source, int maximumFractionDigits)
- {
- set(source, maximumFractionDigits, true);
- }
-
- /**
- * Set the digit list to a representation of the given double value.
- * This method supports both fixed-point and exponential notation.
- * @param source Value to be converted; must not be Inf, -Inf, Nan,
- * or a value <= 0.
- * @param maximumDigits The most fractional or total digits which should
- * be converted.
- * @param fixedPoint If true, then maximumDigits is the maximum
- * fractional digits to be converted. If false, total digits.
- */
- final void set(double source, int maximumDigits, boolean fixedPoint)
- {
- if (source == 0) source = 0;
- // Generate a representation of the form DDDDD, DDDDD.DDDDD, or
- // DDDDDE+/-DDDDD.
- String rep = Double.toString(source);
-
- decimalAt = -1;
- count = 0;
- int exponent = 0;
- // Number of zeros between decimal point and first non-zero digit after
- // decimal point, for numbers < 1.
- int leadingZerosAfterDecimal = 0;
- boolean nonZeroDigitSeen = false;
- for (int i=0; i < rep.length(); ++i)
- {
- char c = rep.charAt(i);
- if (c == '.')
- {
- decimalAt = count;
- }
- else if (c == 'e' || c == 'E')
- {
- exponent = Integer.valueOf(rep.substring(i+1)).intValue();
- break;
- }
- else if (count < MAX_COUNT)
- {
- if (!nonZeroDigitSeen)
- {
- nonZeroDigitSeen = (c != '0');
- if (!nonZeroDigitSeen && decimalAt != -1) ++leadingZerosAfterDecimal;
- }
-
- if (nonZeroDigitSeen) digits[count++] = (byte)c;
- }
- }
- if (decimalAt == -1) decimalAt = count;
- if (nonZeroDigitSeen) {
- decimalAt += exponent - leadingZerosAfterDecimal;
- }
-
- if (fixedPoint)
- {
- // The negative of the exponent represents the number of leading
- // zeros between the decimal and the first non-zero digit, for
- // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
- // is more than the maximum fraction digits, then we have an underflow
- // for the printed representation.
- if (-decimalAt > maximumDigits) {
- // Handle an underflow to zero when we round something like
- // 0.0009 to 2 fractional digits.
- count = 0;
- return;
- } else if (-decimalAt == maximumDigits) {
- // If we round 0.0009 to 3 fractional digits, then we have to
- // create a new one digit in the least significant location.
- if (shouldRoundUp(0)) {
- count = 1;
- ++decimalAt;
- digits[0] = (byte)'1';
- } else {
- count = 0;
- }
- return;
- }
- // else fall through
- }
-
- // Eliminate trailing zeros.
- while (count > 1 && digits[count - 1] == '0')
- --count;
-
- if (DEBUG) {
- System.out.println("Before rounding " + this);
- }
-
- // Eliminate digits beyond maximum digits to be displayed.
- // Round up if appropriate.
- round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
-
- if (DEBUG) {
- System.out.println("After rounding " + this);
- }
-
- // The following method also works, and does not rely on the specific
- // format generated by Double.toString(). However, it introduces significant
- // errors in the least-significant digits, which cause round-trip parse and
- // format operations to fail. We retain this code for future reference;
- // the compiler will ignore it.
- if (false)
- {
- // Find the exponent for this value. Our convention is 0.mmmm * 10^decimalAt,
- // so we need to add one.
- decimalAt = log10(source) + 1;
-
- // Compute the number of digits to generate based on the maximum fraction
- // digits and the exponent. For example, if the exponent is -95 and the
- // maximum fraction digits is 100, then we'll have 95 leading zeros and only
- // 5 significant digits.
-
- count = maximumDigits + decimalAt;
- if (count > DBL_DIG) count = DBL_DIG;
- if (count < 0) count = 0;
- if (count == 0) return; // Return if we've underflowed to zero
-
- // Put the mantissa into a long. We create a mantissa value in the
- // range 10^n-1 <= mantissa < 10^n, where n is the desired number of
- // digits. If this is a small number << 1, decimalAt may be negative,
- // indicating leading zeros between the decimal point an digits[0]. A
- // decimalAt value of 0 indicates that the decimal point is before
- // digits[0].
-
- //System.out.println("d = " + source + " log = " + (Math.log(source) / LOG10));
- //System.out.println("d == 0.1 " + (source == 0.1));
- long mantissa = Math.round(source * Math.pow(10, count - decimalAt));
- String longRep = Long.toString(mantissa);
-
- // At this point we have a representation of exactly maxDecimalCount
- // characters.
- // FOLLOWING LINE FOR DEBUGGING ONLY. THIS catches problems with log10 computation.
- if (longRep.length() != count)
- throw new Error("Rep=" + longRep + " rep.length=" + longRep.length() +
- " exp.len=" + count + " " +
- "val=" + source + " mant=" + mantissa +
- " decimalAt=" + decimalAt);
-
- // Eliminate trailing zeros.
- while (count > 1 && longRep.charAt(count - 1) == '0')
- --count;
-
- // Copy digits over
- for (int i=0; i<count; ++i)
- digits[i] = (byte)longRep.charAt(i);
- }
- }
-
- /**
- * Round the representation to the given number of digits.
- * @param maximumDigits The maximum number of digits to be shown.
- * Upon return, count will be less than or equal to maximumDigits.
- */
- private final void round(int maximumDigits)
- {
- // Eliminate digits beyond maximum digits to be displayed.
- // Round up if appropriate.
- if (maximumDigits >= 0 && maximumDigits < count)
- {
- if (shouldRoundUp(maximumDigits)) {
- // Rounding up involved incrementing digits from LSD to MSD.
- // In most cases this is simple, but in a worst case situation
- // (9999..99) we have to adjust the decimalAt value.
- for (;;)
- {
- --maximumDigits;
- if (maximumDigits < 0)
- {
- // We have all 9's, so we increment to a single digit
- // of one and adjust the exponent.
- digits[0] = (byte) '1';
- ++decimalAt;
- maximumDigits = 0; // Adjust the count
- break;
- }
-
- ++digits[maximumDigits];
- if (digits[maximumDigits] <= '9') break;
- // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
- }
- ++maximumDigits; // Increment for use as count
- }
- count = maximumDigits;
-
- // Eliminate trailing zeros.
- while (count > 1 && digits[count-1] == '0') {
- --count;
- }
- }
- }
-
-
- /**
- * Return true if truncating the representation to the given number
- * of digits will result in an increment to the last digit. This
- * method implements half-even rounding, the default rounding mode.
- * [bnf]
- * @param maximumDigits the number of digits to keep, from 0 to
- * <code>count-1</code>. If 0, then all digits are rounded away, and
- * this method returns true if a one should be generated (e.g., formatting
- * 0.09 with "#.#").
- * @return true if digit <code>maximumDigits-1</code> should be
- * incremented
- */
- private boolean shouldRoundUp(int maximumDigits) {
- boolean increment = false;
- // Implement IEEE half-even rounding
- if (maximumDigits < count) {
- if (digits[maximumDigits] > '5') {
- return true;
- } else if (digits[maximumDigits] == '5' ) {
- for (int i=maximumDigits+1; i<count; ++i) {
- if (digits[i] != '0') {
- return true;
- }
- }
- return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
- }
- }
- return false;
- }
-
- /**
- * Utility routine to set the value of the digit list from a long
- */
- public final void set(long source)
- {
- set(source, 0);
- }
-
- /**
- * Set the digit list to a representation of the given long value.
- * @param source Value to be converted; must be >= 0 or ==
- * Long.MIN_VALUE.
- * @param maximumDigits The most digits which should be converted.
- * If maximumDigits is lower than the number of significant digits
- * in source, the representation will be rounded. Ignored if <= 0.
- */
- public final void set(long source, int maximumDigits)
- {
- // This method does not expect a negative number. However,
- // "source" can be a Long.MIN_VALUE (-9223372036854775808),
- // if the number being formatted is a Long.MIN_VALUE. In that
- // case, it will be formatted as -Long.MIN_VALUE, a number
- // which is outside the legal range of a long, but which can
- // be represented by DigitList.
- if (source <= 0) {
- if (source == Long.MIN_VALUE) {
- decimalAt = count = MAX_COUNT;
- System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
- } else {
- decimalAt = count = 0; // Values <= 0 format as zero
- }
- } else {
- // Rewritten to improve performance. I used to call
- // Long.toString(), which was about 4x slower than this code.
- int left = MAX_COUNT;
- int right;
- while (source > 0) {
- digits[--left] = (byte) ('0' + (source % 10));
- source /= 10;
- }
- decimalAt = MAX_COUNT - left;
- // Don't copy trailing zeros. We are guaranteed that there is at
- // least one non-zero digit, so we don't have to check lower bounds.
- for (right = MAX_COUNT - 1; digits[right] == '0'; --right) {}
- count = right - left + 1;
- System.arraycopy(digits, left, digits, 0, count);
- }
- if (maximumDigits > 0) round(maximumDigits);
- }
-
- /**
- * equality test between two digit lists.
- */
- public boolean equals(Object obj) {
- if (this == obj) // quick check
- return true;
- if (!(obj instanceof DigitList)) // (1) same object?
- return false;
- DigitList other = (DigitList) obj;
- if (count != other.count ||
- decimalAt != other.decimalAt)
- return false;
- for (int i = 0; i < count; i++)
- if (digits[i] != other.digits[i])
- return false;
- return true;
- }
-
- /**
- * Generates the hash code for the digit list.
- */
- public int hashCode() {
- int hashcode = decimalAt;
-
- for (int i = 0; i < count; i++)
- hashcode = hashcode * 37 + digits[i];
-
- return hashcode;
- }
-
- /**
- * Returns true if this DigitList represents Long.MIN_VALUE;
- * false, otherwise. This is required so that getLong() works.
- */
- private boolean isLongMIN_VALUE()
- {
- if (decimalAt != count || count != MAX_COUNT)
- return false;
-
- for (int i = 0; i < count; ++i)
- {
- if (digits[i] != LONG_MIN_REP[i]) return false;
- }
-
- return true;
- }
-
- private static byte[] LONG_MIN_REP;
-
- static
- {
- // Store the representation of LONG_MIN without the leading '-'
- String s = Long.toString(Long.MIN_VALUE);
- LONG_MIN_REP = new byte[MAX_COUNT];
- for (int i=0; i < MAX_COUNT; ++i)
- {
- LONG_MIN_REP[i] = (byte)s.charAt(i + 1);
- }
- }
-
- /**
- * Return the floor of the log base 10 of a given double.
- * This method compensates for inaccuracies which arise naturally when
- * computing logs, and always give the correct value. The parameter
- * must be positive and finite.
- */
- private static final int log10(double d)
- {
- // The reason this routine is needed is that simply taking the
- // log and dividing by log10 yields a result which may be off
- // by 1 due to rounding errors. For example, the naive log10
- // of 1.0e300 taken this way is 299, rather than 300.
- double log10 = Math.log(d) / LOG10;
- int ilog10 = (int)Math.floor(log10);
- // Positive logs could be too small, e.g. 0.99 instead of 1.0
- if (log10 > 0 && d >= Math.pow(10, ilog10 + 1))
- {
- ++ilog10;
- }
- // Negative logs could be too big, e.g. -0.99 instead of -1.0
- else if (log10 < 0 && d < Math.pow(10, ilog10))
- {
- --ilog10;
- }
- return ilog10;
- }
-
- private static final double LOG10 = Math.log(10.0);
-
- public String toString()
- {
- if (isZero()) return "0";
- StringBuffer buf = new StringBuffer("0.");
- for (int i=0; i<count; ++i) buf.append((char)digits[i]);
- buf.append("x10^");
- buf.append(decimalAt);
- return buf.toString();
- }
- }