- /*
 - * @(#)GregorianCalendar.java 1.53 00/01/19
 - *
 - * Copyright 1996-2000 Sun Microsystems, Inc. All Rights Reserved.
 - *
 - * This software is the proprietary information of Sun Microsystems, Inc.
 - * Use is subject to license terms.
 - *
 - */
 - /*
 - * (C) Copyright Taligent, Inc. 1996-1998 - All Rights Reserved
 - * (C) Copyright IBM Corp. 1996-1998 - All Rights Reserved
 - *
 - * The original version of this source code and documentation is copyrighted
 - * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
 - * materials are provided under terms of a License Agreement between Taligent
 - * and Sun. This technology is protected by multiple US and International
 - * patents. This notice and attribution to Taligent may not be removed.
 - * Taligent is a registered trademark of Taligent, Inc.
 - *
 - */
 - package java.util;
 - /**
 - * <code>GregorianCalendar</code> is a concrete subclass of
 - * {@link Calendar}
 - * and provides the standard calendar used by most of the world.
 - *
 - * <p>
 - * The standard (Gregorian) calendar has 2 eras, BC and AD.
 - *
 - * <p>
 - * This implementation handles a single discontinuity, which corresponds by
 - * default to the date the Gregorian calendar was instituted (October 15, 1582
 - * in some countries, later in others). The cutover date may be changed by the
 - * caller by calling <code>setGregorianChange()</code>.
 - *
 - * <p>
 - * Historically, in those countries which adopted the Gregorian calendar first,
 - * October 4, 1582 was thus followed by October 15, 1582. This calendar models
 - * this correctly. Before the Gregorian cutover, <code>GregorianCalendar</code>
 - * implements the Julian calendar. The only difference between the Gregorian
 - * and the Julian calendar is the leap year rule. The Julian calendar specifies
 - * leap years every four years, whereas the Gregorian calendar omits century
 - * years which are not divisible by 400.
 - *
 - * <p>
 - * <code>GregorianCalendar</code> implements <em>proleptic</em> Gregorian and
 - * Julian calendars. That is, dates are computed by extrapolating the current
 - * rules indefinitely far backward and forward in time. As a result,
 - * <code>GregorianCalendar</code> may be used for all years to generate
 - * meaningful and consistent results. However, dates obtained using
 - * <code>GregorianCalendar</code> are historically accurate only from March 1, 4
 - * AD onward, when modern Julian calendar rules were adopted. Before this date,
 - * leap year rules were applied irregularly, and before 45 BC the Julian
 - * calendar did not even exist.
 - *
 - * <p>
 - * Prior to the institution of the Gregorian calendar, New Year's Day was
 - * March 25. To avoid confusion, this calendar always uses January 1. A manual
 - * adjustment may be made if desired for dates that are prior to the Gregorian
 - * changeover and which fall between January 1 and March 24.
 - *
 - * <p>Values calculated for the <code>WEEK_OF_YEAR</code> field range from 1 to
 - * 53. Week 1 for a year is the earliest seven day period starting on
 - * <code>getFirstDayOfWeek()</code> that contains at least
 - * <code>getMinimalDaysInFirstWeek()</code> days from that year. It thus
 - * depends on the values of <code>getMinimalDaysInFirstWeek()</code>,
 - * <code>getFirstDayOfWeek()</code>, and the day of the week of January 1.
 - * Weeks between week 1 of one year and week 1 of the following year are
 - * numbered sequentially from 2 to 52 or 53 (as needed).
 - * <p>For example, January 1, 1998 was a Thursday. If
 - * <code>getFirstDayOfWeek()</code> is <code>MONDAY</code> and
 - * <code>getMinimalDaysInFirstWeek()</code> is 4 (these are the values
 - * reflecting ISO 8601 and many national standards), then week 1 of 1998 starts
 - * on December 29, 1997, and ends on January 4, 1998. If, however,
 - * <code>getFirstDayOfWeek()</code> is <code>SUNDAY</code>, then week 1 of 1998
 - * starts on January 4, 1998, and ends on January 10, 1998; the first three days
 - * of 1998 then are part of week 53 of 1997.
 - *
 - * <p>Values calculated for the <code>WEEK_OF_MONTH</code> field range from 0 or
 - * 1 to 4 or 5. Week 1 of a month (the days with <code>WEEK_OF_MONTH =
 - * 1</code>) is the earliest set of at least
 - * <code>getMinimalDaysInFirstWeek()</code> contiguous days in that month,
 - * ending on the day before <code>getFirstDayOfWeek()</code>. Unlike
 - * week 1 of a year, week 1 of a month may be shorter than 7 days, need
 - * not start on <code>getFirstDayOfWeek()</code>, and will not include days of
 - * the previous month. Days of a month before week 1 have a
 - * <code>WEEK_OF_MONTH</code> of 0.
 - *
 - * <p>For example, if <code>getFirstDayOfWeek()</code> is <code>SUNDAY</code>
 - * and <code>getMinimalDaysInFirstWeek()</code> is 4, then the first week of
 - * January 1998 is Sunday, January 4 through Saturday, January 10. These days
 - * have a <code>WEEK_OF_MONTH</code> of 1. Thursday, January 1 through
 - * Saturday, January 3 have a <code>WEEK_OF_MONTH</code> of 0. If
 - * <code>getMinimalDaysInFirstWeek()</code> is changed to 3, then January 1
 - * through January 3 have a <code>WEEK_OF_MONTH</code> of 1.
 - *
 - * <p>
 - * <strong>Example:</strong>
 - * <blockquote>
 - * <pre>
 - * // get the supported ids for GMT-08:00 (Pacific Standard Time)
 - * String[] ids = TimeZone.getAvailableIDs(-8 * 60 * 60 * 1000);
 - * // if no ids were returned, something is wrong. get out.
 - * if (ids.length == 0)
 - * System.exit(0);
 - *
 - * // begin output
 - * System.out.println("Current Time");
 - *
 - * // create a Pacific Standard Time time zone
 - * SimpleTimeZone pdt = new SimpleTimeZone(-8 * 60 * 60 * 1000, ids[0]);
 - *
 - * // set up rules for daylight savings time
 - * pdt.setStartRule(Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);
 - * pdt.setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);
 - *
 - * // create a GregorianCalendar with the Pacific Daylight time zone
 - * // and the current date and time
 - * Calendar calendar = new GregorianCalendar(pdt);
 - * Date trialTime = new Date();
 - * calendar.setTime(trialTime);
 - *
 - * // print out a bunch of interesting things
 - * System.out.println("ERA: " + calendar.get(Calendar.ERA));
 - * System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
 - * System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
 - * System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));
 - * System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));
 - * System.out.println("DATE: " + calendar.get(Calendar.DATE));
 - * System.out.println("DAY_OF_MONTH: " + calendar.get(Calendar.DAY_OF_MONTH));
 - * System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));
 - * System.out.println("DAY_OF_WEEK: " + calendar.get(Calendar.DAY_OF_WEEK));
 - * System.out.println("DAY_OF_WEEK_IN_MONTH: "
 - * + calendar.get(Calendar.DAY_OF_WEEK_IN_MONTH));
 - * System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
 - * System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
 - * System.out.println("HOUR_OF_DAY: " + calendar.get(Calendar.HOUR_OF_DAY));
 - * System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
 - * System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
 - * System.out.println("MILLISECOND: " + calendar.get(Calendar.MILLISECOND));
 - * System.out.println("ZONE_OFFSET: "
 - * + (calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000)));
 - * System.out.println("DST_OFFSET: "
 - * + (calendar.get(Calendar.DST_OFFSET)/(60*60*1000)));
 - * System.out.println("Current Time, with hour reset to 3");
 - * calendar.clear(Calendar.HOUR_OF_DAY); // so doesn't override
 - * calendar.set(Calendar.HOUR, 3);
 - * System.out.println("ERA: " + calendar.get(Calendar.ERA));
 - * System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
 - * System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
 - * System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));
 - * System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));
 - * System.out.println("DATE: " + calendar.get(Calendar.DATE));
 - * System.out.println("DAY_OF_MONTH: " + calendar.get(Calendar.DAY_OF_MONTH));
 - * System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));
 - * System.out.println("DAY_OF_WEEK: " + calendar.get(Calendar.DAY_OF_WEEK));
 - * System.out.println("DAY_OF_WEEK_IN_MONTH: "
 - * + calendar.get(Calendar.DAY_OF_WEEK_IN_MONTH));
 - * System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
 - * System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
 - * System.out.println("HOUR_OF_DAY: " + calendar.get(Calendar.HOUR_OF_DAY));
 - * System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
 - * System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
 - * System.out.println("MILLISECOND: " + calendar.get(Calendar.MILLISECOND));
 - * System.out.println("ZONE_OFFSET: "
 - * + (calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000))); // in hours
 - * System.out.println("DST_OFFSET: "
 - * + (calendar.get(Calendar.DST_OFFSET)/(60*60*1000))); // in hours
 - * </pre>
 - * </blockquote>
 - *
 - * @see Calendar
 - * @see TimeZone
 - * @version 1.53
 - * @author David Goldsmith, Mark Davis, Chen-Lieh Huang, Alan Liu
 - * @since JDK1.1
 - */
 - public class GregorianCalendar extends Calendar {
 - /*
 - * Implementation Notes
 - *
 - * The Julian day number, as used here, is a modified number which has its
 - * onset at midnight, rather than noon.
 - *
 - * The epoch is the number of days or milliseconds from some defined
 - * starting point. The epoch for java.util.Date is used here; that is,
 - * milliseconds from January 1, 1970 (Gregorian), midnight UTC. Other
 - * epochs which are used are January 1, year 1 (Gregorian), which is day 1
 - * of the Gregorian calendar, and December 30, year 0 (Gregorian), which is
 - * day 1 of the Julian calendar.
 - *
 - * We implement the proleptic Julian and Gregorian calendars. This means we
 - * implement the modern definition of the calendar even though the
 - * historical usage differs. For example, if the Gregorian change is set
 - * to new Date(Long.MIN_VALUE), we have a pure Gregorian calendar which
 - * labels dates preceding the invention of the Gregorian calendar in 1582 as
 - * if the calendar existed then.
 - *
 - * Likewise, with the Julian calendar, we assume a consistent 4-year leap
 - * rule, even though the historical pattern of leap years is irregular,
 - * being every 3 years from 45 BC through 9 BC, then every 4 years from 8 AD
 - * onwards, with no leap years in-between. Thus date computations and
 - * functions such as isLeapYear() are not intended to be historically
 - * accurate.
 - *
 - * Given that milliseconds are a long, day numbers such as Julian day
 - * numbers, Gregorian or Julian calendar days, or epoch days, are also
 - * longs. Years can fit into an int.
 - */
 - //////////////////
 - // Class Variables
 - //////////////////
 - /**
 - * Value of the <code>ERA</code> field indicating
 - * the period before the common era (before Christ), also known as BCE.
 - * The sequence of years at the transition from <code>BC</code> to <code>AD</code> is
 - * ..., 2 BC, 1 BC, 1 AD, 2 AD,...
 - * @see Calendar#ERA
 - */
 - public static final int BC = 0;
 - /**
 - * Value of the <code>ERA</code> field indicating
 - * the common era (Anno Domini), also known as CE.
 - * The sequence of years at the transition from <code>BC</code> to <code>AD</code> is
 - * ..., 2 BC, 1 BC, 1 AD, 2 AD,...
 - * @see Calendar#ERA
 - */
 - public static final int AD = 1;
 - private static final int JAN_1_1_JULIAN_DAY = 1721426; // January 1, year 1 (Gregorian)
 - private static final int EPOCH_JULIAN_DAY = 2440588; // Jaunary 1, 1970 (Gregorian)
 - private static final int EPOCH_YEAR = 1970;
 - private static final int NUM_DAYS[]
 - = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
 - private static final int LEAP_NUM_DAYS[]
 - = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
 - private static final int MONTH_LENGTH[]
 - = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
 - private static final int LEAP_MONTH_LENGTH[]
 - = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
 - // Useful millisecond constants. Although ONE_DAY and ONE_WEEK can fit
 - // into ints, they must be longs in order to prevent arithmetic overflow
 - // when performing (bug 4173516).
 - private static final int ONE_SECOND = 1000;
 - private static final int ONE_MINUTE = 60*ONE_SECOND;
 - private static final int ONE_HOUR = 60*ONE_MINUTE;
 - private static final long ONE_DAY = 24*ONE_HOUR;
 - private static final long ONE_WEEK = 7*ONE_DAY;
 - /*
 - * <pre>
 - * Greatest Least
 - * Field name Minimum Minimum Maximum Maximum
 - * ---------- ------- ------- ------- -------
 - * ERA 0 0 1 1
 - * YEAR 1 1 292269054 292278994
 - * MONTH 0 0 11 11
 - * WEEK_OF_YEAR 1 1 52 53
 - * WEEK_OF_MONTH 0 0 4 6
 - * DAY_OF_MONTH 1 1 28 31
 - * DAY_OF_YEAR 1 1 365 366
 - * DAY_OF_WEEK 1 1 7 7
 - * DAY_OF_WEEK_IN_MONTH -1 -1 4 6
 - * AM_PM 0 0 1 1
 - * HOUR 0 0 11 11
 - * HOUR_OF_DAY 0 0 23 23
 - * MINUTE 0 0 59 59
 - * SECOND 0 0 59 59
 - * MILLISECOND 0 0 999 999
 - * ZONE_OFFSET -12* -12* 12* 12*
 - * DST_OFFSET 0 0 1* 1*
 - * </pre>
 - * (*) In units of one-hour
 - */
 - private static final int MIN_VALUES[] = {
 - 0,1,0,1,0,1,1,1,-1,0,0,0,0,0,0,-12*ONE_HOUR,0
 - };
 - private static final int LEAST_MAX_VALUES[] = {
 - 1,292269054,11,52,4,28,365,7,4,1,11,23,59,59,999,12*ONE_HOUR,1*ONE_HOUR
 - };
 - private static final int MAX_VALUES[] = {
 - 1,292278994,11,53,6,31,366,7,6,1,11,23,59,59,999,12*ONE_HOUR,1*ONE_HOUR
 - };
 - /////////////////////
 - // Instance Variables
 - /////////////////////
 - /**
 - * The point at which the Gregorian calendar rules are used, measured in
 - * milliseconds from the standard epoch. Default is October 15, 1582
 - * (Gregorian) 00:00:00 UTC or -12219292800000L. For this value, October 4,
 - * 1582 (Julian) is followed by October 15, 1582 (Gregorian). This
 - * corresponds to Julian day number 2299161.
 - * @serial
 - */
 - private long gregorianCutover = -12219292800000L;
 - /**
 - * Midnight, local time (using this Calendar's TimeZone) at or before the
 - * gregorianCutover. This is a pure date value with no time of day or
 - * timezone component.
 - */
 - private transient long normalizedGregorianCutover = gregorianCutover;
 - /**
 - * The year of the gregorianCutover, with 0 representing
 - * 1 BC, -1 representing 2 BC, etc.
 - */
 - private transient int gregorianCutoverYear = 1582;
 - // Proclaim serialization compatiblity with JDK 1.1
 - static final long serialVersionUID = -8125100834729963327L;
 - ///////////////
 - // Constructors
 - ///////////////
 - /**
 - * Constructs a default GregorianCalendar using the current time
 - * in the default time zone with the default locale.
 - */
 - public GregorianCalendar() {
 - this(TimeZone.getDefault(), Locale.getDefault());
 - }
 - /**
 - * Constructs a GregorianCalendar based on the current time
 - * in the given time zone with the default locale.
 - * @param zone the given time zone.
 - */
 - public GregorianCalendar(TimeZone zone) {
 - this(zone, Locale.getDefault());
 - }
 - /**
 - * Constructs a GregorianCalendar based on the current time
 - * in the default time zone with the given locale.
 - * @param aLocale the given locale.
 - */
 - public GregorianCalendar(Locale aLocale) {
 - this(TimeZone.getDefault(), aLocale);
 - }
 - /**
 - * Constructs a GregorianCalendar based on the current time
 - * in the given time zone with the given locale.
 - * @param zone the given time zone.
 - * @param aLocale the given locale.
 - */
 - public GregorianCalendar(TimeZone zone, Locale aLocale) {
 - super(zone, aLocale);
 - setTimeInMillis(System.currentTimeMillis());
 - }
 - /**
 - * Constructs a GregorianCalendar with the given date set
 - * in the default time zone with the default locale.
 - * @param year the value used to set the YEAR time field in the calendar.
 - * @param month the value used to set the MONTH time field in the calendar.
 - * Month value is 0-based. e.g., 0 for January.
 - * @param date the value used to set the DATE time field in the calendar.
 - */
 - public GregorianCalendar(int year, int month, int date) {
 - super(TimeZone.getDefault(), Locale.getDefault());
 - this.set(ERA, AD);
 - this.set(YEAR, year);
 - this.set(MONTH, month);
 - this.set(DATE, date);
 - }
 - /**
 - * Constructs a GregorianCalendar with the given date
 - * and time set for the default time zone with the default locale.
 - * @param year the value used to set the YEAR time field in the calendar.
 - * @param month the value used to set the MONTH time field in the calendar.
 - * Month value is 0-based. e.g., 0 for January.
 - * @param date the value used to set the DATE time field in the calendar.
 - * @param hour the value used to set the HOUR_OF_DAY time field
 - * in the calendar.
 - * @param minute the value used to set the MINUTE time field
 - * in the calendar.
 - */
 - public GregorianCalendar(int year, int month, int date, int hour,
 - int minute) {
 - super(TimeZone.getDefault(), Locale.getDefault());
 - this.set(ERA, AD);
 - this.set(YEAR, year);
 - this.set(MONTH, month);
 - this.set(DATE, date);
 - this.set(HOUR_OF_DAY, hour);
 - this.set(MINUTE, minute);
 - }
 - /**
 - * Constructs a GregorianCalendar with the given date
 - * and time set for the default time zone with the default locale.
 - * @param year the value used to set the YEAR time field in the calendar.
 - * @param month the value used to set the MONTH time field in the calendar.
 - * Month value is 0-based. e.g., 0 for January.
 - * @param date the value used to set the DATE time field in the calendar.
 - * @param hour the value used to set the HOUR_OF_DAY time field
 - * in the calendar.
 - * @param minute the value used to set the MINUTE time field
 - * in the calendar.
 - * @param second the value used to set the SECOND time field
 - * in the calendar.
 - */
 - public GregorianCalendar(int year, int month, int date, int hour,
 - int minute, int second) {
 - super(TimeZone.getDefault(), Locale.getDefault());
 - this.set(ERA, AD);
 - this.set(YEAR, year);
 - this.set(MONTH, month);
 - this.set(DATE, date);
 - this.set(HOUR_OF_DAY, hour);
 - this.set(MINUTE, minute);
 - this.set(SECOND, second);
 - }
 - /////////////////
 - // Public methods
 - /////////////////
 - /**
 - * Sets the GregorianCalendar change date. This is the point when the switch
 - * from Julian dates to Gregorian dates occurred. Default is October 15,
 - * 1582. Previous to this, dates will be in the Julian calendar.
 - * <p>
 - * To obtain a pure Julian calendar, set the change date to
 - * <code>Date(Long.MAX_VALUE)</code>. To obtain a pure Gregorian calendar,
 - * set the change date to <code>Date(Long.MIN_VALUE)</code>.
 - *
 - * @param date the given Gregorian cutover date.
 - */
 - public void setGregorianChange(Date date) {
 - gregorianCutover = date.getTime();
 - // Precompute two internal variables which we use to do the actual
 - // cutover computations. These are the normalized cutover, which is the
 - // midnight at or before the cutover, and the cutover year. The
 - // normalized cutover is in pure date milliseconds; it contains no time
 - // of day or timezone component, and it used to compare against other
 - // pure date values.
 - long cutoverDay = floorDivide(gregorianCutover, ONE_DAY);
 - normalizedGregorianCutover = cutoverDay * ONE_DAY;
 - // Handle the rare case of numeric overflow. If the user specifies a
 - // change of Date(Long.MIN_VALUE), in order to get a pure Gregorian
 - // calendar, then the epoch day is -106751991168, which when multiplied
 - // by ONE_DAY gives 9223372036794351616 -- the negative value is too
 - // large for 64 bits, and overflows into a positive value. We correct
 - // this by using the next day, which for all intents is semantically
 - // equivalent.
 - if (cutoverDay < 0 && normalizedGregorianCutover > 0) {
 - normalizedGregorianCutover = (cutoverDay + 1) * ONE_DAY;
 - }
 - // Normalize the year so BC values are represented as 0 and negative
 - // values.
 - GregorianCalendar cal = new GregorianCalendar(getTimeZone());
 - cal.setTime(date);
 - gregorianCutoverYear = cal.get(YEAR);
 - if (cal.get(ERA) == BC) gregorianCutoverYear = 1 - gregorianCutoverYear;
 - }
 - /**
 - * Gets the Gregorian Calendar change date. This is the point when the
 - * switch from Julian dates to Gregorian dates occurred. Default is
 - * October 15, 1582. Previous to this, dates will be in the Julian
 - * calendar.
 - * @return the Gregorian cutover date for this calendar.
 - */
 - public final Date getGregorianChange() {
 - return new Date(gregorianCutover);
 - }
 - /**
 - * Determines if the given year is a leap year. Returns true if the
 - * given year is a leap year.
 - * @param year the given year.
 - * @return true if the given year is a leap year; false otherwise.
 - */
 - public boolean isLeapYear(int year) {
 - return year >= gregorianCutoverYear ?
 - ((year%4 == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
 - (year%4 == 0); // Julian
 - }
 - /**
 - * Compares this GregorianCalendar to an object reference.
 - * @param obj the object reference with which to compare
 - * @return true if this object is equal to <code>obj</code> false otherwise
 - */
 - public boolean equals(Object obj) {
 - return super.equals(obj) &&
 - obj instanceof GregorianCalendar &&
 - gregorianCutover == ((GregorianCalendar)obj).gregorianCutover;
 - }
 - /**
 - * Override hashCode.
 - * Generates the hash code for the GregorianCalendar object
 - */
 - public int hashCode() {
 - return super.hashCode() ^ (int)gregorianCutover;
 - }
 - /**
 - * Overrides Calendar
 - * Date Arithmetic function.
 - * Adds the specified (signed) amount of time to the given time field,
 - * based on the calendar's rules.
 - * @param field the time field.
 - * @param amount the amount of date or time to be added to the field.
 - * @exception IllegalArgumentException if an unknown field is given.
 - */
 - public void add(int field, int amount) {
 - if (amount == 0) return; // Do nothing!
 - complete();
 - if (field == YEAR) {
 - int year = this.internalGet(YEAR);
 - if (this.internalGetEra() == AD) {
 - year += amount;
 - if (year > 0)
 - this.set(YEAR, year);
 - else { // year <= 0
 - this.set(YEAR, 1 - year);
 - // if year == 0, you get 1 BC
 - this.set(ERA, BC);
 - }
 - }
 - else { // era == BC
 - year -= amount;
 - if (year > 0)
 - this.set(YEAR, year);
 - else { // year <= 0
 - this.set(YEAR, 1 - year);
 - // if year == 0, you get 1 AD
 - this.set(ERA, AD);
 - }
 - }
 - pinDayOfMonth();
 - }
 - else if (field == MONTH) {
 - int month = this.internalGet(MONTH) + amount;
 - if (month >= 0) {
 - set(YEAR, internalGet(YEAR) + (month / 12));
 - set(MONTH, (int) (month % 12));
 - }
 - else { // month < 0
 - set(YEAR, internalGet(YEAR) + ((month + 1) / 12) - 1);
 - month %= 12;
 - if (month < 0) month += 12;
 - set(MONTH, JANUARY + month);
 - }
 - pinDayOfMonth();
 - }
 - else if (field == ERA) {
 - int era = internalGet(ERA) + amount;
 - if (era < 0) era = 0;
 - if (era > 1) era = 1;
 - set(ERA, era);
 - }
 - else {
 - // We handle most fields here. The algorithm is to add a computed amount
 - // of millis to the current millis. The only wrinkle is with DST -- if
 - // the result of the add operation is to move from DST to Standard, or vice
 - // versa, we need to adjust by an hour forward or back, respectively.
 - // Otherwise you get weird effects in which the hour seems to shift when
 - // you add to the DAY_OF_MONTH field, for instance.
 - // We only adjust the DST for fields larger than an hour. For fields
 - // smaller than an hour, we cannot adjust for DST without causing problems.
 - // for instance, if you add one hour to April 5, 1998, 1:00 AM, in PST,
 - // the time becomes "2:00 AM PDT" (an illegal value), but then the adjustment
 - // sees the change and compensates by subtracting an hour. As a result the
 - // time doesn't advance at all.
 - long delta = amount;
 - boolean adjustDST = true;
 - switch (field) {
 - case WEEK_OF_YEAR:
 - case WEEK_OF_MONTH:
 - case DAY_OF_WEEK_IN_MONTH:
 - delta *= 7 * 24 * 60 * 60 * 1000; // 7 days
 - break;
 - case AM_PM:
 - delta *= 12 * 60 * 60 * 1000; // 12 hrs
 - break;
 - case DATE: // synonym of DAY_OF_MONTH
 - case DAY_OF_YEAR:
 - case DAY_OF_WEEK:
 - delta *= 24 * 60 * 60 * 1000; // 1 day
 - break;
 - case HOUR_OF_DAY:
 - case HOUR:
 - delta *= 60 * 60 * 1000; // 1 hour
 - adjustDST = false;
 - break;
 - case MINUTE:
 - delta *= 60 * 1000; // 1 minute
 - adjustDST = false;
 - break;
 - case SECOND:
 - delta *= 1000; // 1 second
 - adjustDST = false;
 - break;
 - case MILLISECOND:
 - adjustDST = false;
 - break;
 - case ZONE_OFFSET:
 - case DST_OFFSET:
 - default:
 - throw new IllegalArgumentException();
 - }
 - // Save the current DST state.
 - long dst = 0;
 - if (adjustDST) dst = internalGet(DST_OFFSET);
 - setTimeInMillis(time + delta); // Automatically computes fields if necessary
 - if (adjustDST) {
 - // Now do the DST adjustment alluded to above.
 - // Only call setTimeInMillis if necessary, because it's an expensive call.
 - dst -= internalGet(DST_OFFSET);
 - if (delta != 0) setTimeInMillis(time + dst);
 - }
 - }
 - }
 - /**
 - * Overrides Calendar
 - * Time Field Rolling function.
 - * Rolls (up/down) a single unit of time on the given time field.
 - * @param field the time field.
 - * @param up Indicates if rolling up or rolling down the field value.
 - * @exception IllegalArgumentException if an unknown field value is given.
 - */
 - public void roll(int field, boolean up) {
 - roll(field, up ? +1 : -1);
 - }
 - /**
 - * Roll a field by a signed amount.
 - * @since 1.2
 - */
 - public void roll(int field, int amount) {
 - if (amount == 0) return; // Nothing to do
 - int min = 0, max = 0, gap;
 - if (field >= 0 && field < FIELD_COUNT) {
 - complete();
 - min = getMinimum(field);
 - max = getMaximum(field);
 - }
 - switch (field) {
 - case ERA:
 - case YEAR:
 - case AM_PM:
 - case MINUTE:
 - case SECOND:
 - case MILLISECOND:
 - // These fields are handled simply, since they have fixed minima
 - // and maxima. The field DAY_OF_MONTH is almost as simple. Other
 - // fields are complicated, since the range within they must roll
 - // varies depending on the date.
 - break;
 - case HOUR:
 - case HOUR_OF_DAY:
 - // Rolling the hour is difficult on the ONSET and CEASE days of
 - // daylight savings. For example, if the change occurs at
 - // 2 AM, we have the following progression:
 - // ONSET: 12 Std -> 1 Std -> 3 Dst -> 4 Dst
 - // CEASE: 12 Dst -> 1 Dst -> 1 Std -> 2 Std
 - // To get around this problem we don't use fields; we manipulate
 - // the time in millis directly.
 - {
 - // Assume min == 0 in calculations below
 - Date start = getTime();
 - int oldHour = internalGet(field);
 - int newHour = (oldHour + amount) % (max + 1);
 - if (newHour < 0) {
 - newHour += max + 1;
 - }
 - setTime(new Date(start.getTime() + ONE_HOUR * (newHour - oldHour)));
 - return;
 - }
 - case MONTH:
 - // Rolling the month involves both pinning the final value to [0, 11]
 - // and adjusting the DAY_OF_MONTH if necessary. We only adjust the
 - // DAY_OF_MONTH if, after updating the MONTH field, it is illegal.
 - // E.g., <jan31>.roll(MONTH, 1) -> <feb28> or <feb29>.
 - {
 - int mon = (internalGet(MONTH) + amount) % 12;
 - if (mon < 0) mon += 12;
 - set(MONTH, mon);
 - // Keep the day of month in range. We don't want to spill over
 - // into the next month; e.g., we don't want jan31 + 1 mo -> feb31 ->
 - // mar3.
 - // NOTE: We could optimize this later by checking for dom <= 28
 - // first. Do this if there appears to be a need. [LIU]
 - int monthLen = monthLength(mon);
 - int dom = internalGet(DAY_OF_MONTH);
 - if (dom > monthLen) set(DAY_OF_MONTH, monthLen);
 - return;
 - }
 - case WEEK_OF_YEAR:
 - {
 - // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
 - // week. Also, rolling the week of the year can have seemingly
 - // strange effects simply because the year of the week of year
 - // may be different from the calendar year. For example, the
 - // date Dec 28, 1997 is the first day of week 1 of 1998 (if
 - // weeks start on Sunday and the minimal days in first week is
 - // <= 3).
 - int woy = internalGet(WEEK_OF_YEAR);
 - // Get the ISO year, which matches the week of year. This
 - // may be one year before or after the calendar year.
 - int isoYear = internalGet(YEAR);
 - int isoDoy = internalGet(DAY_OF_YEAR);
 - if (internalGet(MONTH) == Calendar.JANUARY) {
 - if (woy >= 52) {
 - --isoYear;
 - isoDoy += yearLength(isoYear);
 - }
 - }
 - else {
 - if (woy == 1) {
 - isoDoy -= yearLength(isoYear);
 - ++isoYear;
 - }
 - }
 - woy += amount;
 - // Do fast checks to avoid unnecessary computation:
 - if (woy < 1 || woy > 52) {
 - // Determine the last week of the ISO year.
 - // We do this using the standard formula we use
 - // everywhere in this file. If we can see that the
 - // days at the end of the year are going to fall into
 - // week 1 of the next year, we drop the last week by
 - // subtracting 7 from the last day of the year.
 - int lastDoy = yearLength(isoYear);
 - int lastRelDow = (lastDoy - isoDoy + internalGet(DAY_OF_WEEK) -
 - getFirstDayOfWeek()) % 7;
 - if (lastRelDow < 0) lastRelDow += 7;
 - if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7;
 - int lastWoy = weekNumber(lastDoy, lastRelDow + 1);
 - woy = ((woy + lastWoy - 1) % lastWoy) + 1;
 - }
 - set(WEEK_OF_YEAR, woy);
 - set(YEAR, isoYear);
 - return;
 - }
 - case WEEK_OF_MONTH:
 - {
 - // This is tricky, because during the roll we may have to shift
 - // to a different day of the week. For example:
 - // s m t w r f s
 - // 1 2 3 4 5
 - // 6 7 8 9 10 11 12
 - // When rolling from the 6th or 7th back one week, we go to the
 - // 1st (assuming that the first partial week counts). The same
 - // thing happens at the end of the month.
 - // The other tricky thing is that we have to figure out whether
 - // the first partial week actually counts or not, based on the
 - // minimal first days in the week. And we have to use the
 - // correct first day of the week to delineate the week
 - // boundaries.
 - // Here's our algorithm. First, we find the real boundaries of
 - // the month. Then we discard the first partial week if it
 - // doesn't count in this locale. Then we fill in the ends with
 - // phantom days, so that the first partial week and the last
 - // partial week are full weeks. We then have a nice square
 - // block of weeks. We do the usual rolling within this block,
 - // as is done elsewhere in this method. If we wind up on one of
 - // the phantom days that we added, we recognize this and pin to
 - // the first or the last day of the month. Easy, eh?
 - // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
 - // in this locale. We have dow in 0..6.
 - int dow = internalGet(DAY_OF_WEEK) - getFirstDayOfWeek();
 - if (dow < 0) dow += 7;
 - // Find the day of the week (normalized for locale) for the first
 - // of the month.
 - int fdm = (dow - internalGet(DAY_OF_MONTH) + 1) % 7;
 - if (fdm < 0) fdm += 7;
 - // Get the first day of the first full week of the month,
 - // including phantom days, if any. Figure out if the first week
 - // counts or not; if it counts, then fill in phantom days. If
 - // not, advance to the first real full week (skip the partial week).
 - int start;
 - if ((7 - fdm) < getMinimalDaysInFirstWeek())
 - start = 8 - fdm; // Skip the first partial week
 - else
 - start = 1 - fdm; // This may be zero or negative
 - // Get the day of the week (normalized for locale) for the last
 - // day of the month.
 - int monthLen = monthLength(internalGet(MONTH));
 - int ldm = (monthLen - internalGet(DAY_OF_MONTH) + dow) % 7;
 - // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
 - // Get the limit day for the blocked-off rectangular month; that
 - // is, the day which is one past the last day of the month,
 - // after the month has already been filled in with phantom days
 - // to fill out the last week. This day has a normalized DOW of 0.
 - int limit = monthLen + 7 - ldm;
 - // Now roll between start and (limit - 1).
 - gap = limit - start;
 - int day_of_month = (internalGet(DAY_OF_MONTH) + amount*7 -
 - start) % gap;
 - if (day_of_month < 0) day_of_month += gap;
 - day_of_month += start;
 - // Finally, pin to the real start and end of the month.
 - if (day_of_month < 1) day_of_month = 1;
 - if (day_of_month > monthLen) day_of_month = monthLen;
 - // Set the DAY_OF_MONTH. We rely on the fact that this field
 - // takes precedence over everything else (since all other fields
 - // are also set at this point). If this fact changes (if the
 - // disambiguation algorithm changes) then we will have to unset
 - // the appropriate fields here so that DAY_OF_MONTH is attended
 - // to.
 - set(DAY_OF_MONTH, day_of_month);
 - return;
 - }
 - case DAY_OF_MONTH:
 - max = monthLength(internalGet(MONTH));
 - break;
 - case DAY_OF_YEAR:
 - {
 - // Roll the day of year using millis. Compute the millis for
 - // the start of the year, and get the length of the year.
 - long delta = amount * ONE_DAY; // Scale up from days to millis
 - long min2 = time - (internalGet(DAY_OF_YEAR) - 1) * ONE_DAY;
 - int yearLength = yearLength();
 - time = (time + delta - min2) % (yearLength*ONE_DAY);
 - if (time < 0) time += yearLength*ONE_DAY;
 - setTimeInMillis(time + min2);
 - return;
 - }
 - case DAY_OF_WEEK:
 - {
 - // Roll the day of week using millis. Compute the millis for
 - // the start of the week, using the first day of week setting.
 - // Restrict the millis to [start, start+7days).
 - long delta = amount * ONE_DAY; // Scale up from days to millis
 - // Compute the number of days before the current day in this
 - // week. This will be a value 0..6.
 - int leadDays = internalGet(DAY_OF_WEEK) - getFirstDayOfWeek();
 - if (leadDays < 0) leadDays += 7;
 - long min2 = time - leadDays * ONE_DAY;
 - time = (time + delta - min2) % ONE_WEEK;
 - if (time < 0) time += ONE_WEEK;
 - setTimeInMillis(time + min2);
 - return;
 - }
 - case DAY_OF_WEEK_IN_MONTH:
 - {
 - // Roll the day of week in the month using millis. Determine
 - // the first day of the week in the month, and then the last,
 - // and then roll within that range.
 - long delta = amount * ONE_WEEK; // Scale up from weeks to millis
 - // Find the number of same days of the week before this one
 - // in this month.
 - int preWeeks = (internalGet(DAY_OF_MONTH) - 1) / 7;
 - // Find the number of same days of the week after this one
 - // in this month.
 - int postWeeks = (monthLength(internalGet(MONTH)) -
 - internalGet(DAY_OF_MONTH)) / 7;
 - // From these compute the min and gap millis for rolling.
 - long min2 = time - preWeeks * ONE_WEEK;
 - long gap2 = ONE_WEEK * (preWeeks + postWeeks + 1); // Must add 1!
 - // Roll within this range
 - time = (time + delta - min2) % gap2;
 - if (time < 0) time += gap2;
 - setTimeInMillis(time + min2);
 - return;
 - }
 - case ZONE_OFFSET:
 - case DST_OFFSET:
 - default:
 - // These fields cannot be rolled
 - throw new IllegalArgumentException();
 - }
 - // These are the standard roll instructions. These work for all
 - // simple cases, that is, cases in which the limits are fixed, such
 - // as the hour, the month, and the era.
 - gap = max - min + 1;
 - int value = internalGet(field) + amount;
 - value = (value - min) % gap;
 - if (value < 0) value += gap;
 - value += min;
 - set(field, value);
 - }
 - /**
 - * Returns minimum value for the given field.
 - * e.g. for Gregorian DAY_OF_MONTH, 1
 - * Please see Calendar.getMinimum for descriptions on parameters and
 - * the return value.
 - */
 - public int getMinimum(int field) {
 - return MIN_VALUES[field];
 - }
 - /**
 - * Returns maximum value for the given field.
 - * e.g. for Gregorian DAY_OF_MONTH, 31
 - * Please see Calendar.getMaximum for descriptions on parameters and
 - * the return value.
 - */
 - public int getMaximum(int field) {
 - return MAX_VALUES[field];
 - }
 - /**
 - * Returns highest minimum value for the given field if varies.
 - * Otherwise same as getMinimum(). For Gregorian, no difference.
 - * Please see Calendar.getGreatestMinimum for descriptions on parameters
 - * and the return value.
 - */
 - public int getGreatestMinimum(int field) {
 - return MIN_VALUES[field];
 - }
 - /**
 - * Returns lowest maximum value for the given field if varies.
 - * Otherwise same as getMaximum(). For Gregorian DAY_OF_MONTH, 28
 - * Please see Calendar.getLeastMaximum for descriptions on parameters and
 - * the return value.
 - */
 - public int getLeastMaximum(int field) {
 - return LEAST_MAX_VALUES[field];
 - }
 - /**
 - * Return the minimum value that this field could have, given the current date.
 - * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
 - * @since 1.2
 - */
 - public int getActualMinimum(int field) {
 - return getMinimum(field);
 - }
 - /**
 - * Return the maximum value that this field could have, given the current date.
 - * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
 - * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar,
 - * for some years the actual maximum for MONTH is 12, and for others 13.
 - * @since 1.2
 - */
 - public int getActualMaximum(int field) {
 - /* It is a known limitation that the code here (and in getActualMinimum)
 - * won't behave properly at the extreme limits of GregorianCalendar's
 - * representable range (except for the code that handles the YEAR
 - * field). That's because the ends of the representable range are at
 - * odd spots in the year. For calendars with the default Gregorian
 - * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
 - * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
 - * zones. As a result, if the calendar is set to Aug 1 292278994 AD,
 - * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar
 - * 31 in that year, the actual maximum month might be Jul, whereas is
 - * the date is Mar 15, the actual maximum might be Aug -- depending on
 - * the precise semantics that are desired. Similar considerations
 - * affect all fields. Nonetheless, this effect is sufficiently arcane
 - * that we permit it, rather than complicating the code to handle such
 - * intricacies. - liu 8/20/98 */
 - switch (field) {
 - // we have functions that enable us to fast-path number of days in month
 - // of year
 - case DAY_OF_MONTH:
 - return monthLength(get(MONTH));
 - case DAY_OF_YEAR:
 - return yearLength();
 - // for week of year, week of month, or day of week in month, we
 - // just fall back on the default implementation in Calendar (I'm not sure
 - // we could do better by having special calculations here)
 - case WEEK_OF_YEAR:
 - case WEEK_OF_MONTH:
 - case DAY_OF_WEEK_IN_MONTH:
 - return super.getActualMaximum(field);
 - case YEAR:
 - /* The year computation is no different, in principle, from the
 - * others, however, the range of possible maxima is large. In
 - * addition, the way we know we've exceeded the range is different.
 - * For these reasons, we use the special case code below to handle
 - * this field.
 - *
 - * The actual maxima for YEAR depend on the type of calendar:
 - *
 - * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
 - * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD
 - * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD
 - *
 - * We know we've exceeded the maximum when either the month, date,
 - * time, or era changes in response to setting the year. We don't
 - * check for month, date, and time here because the year and era are
 - * sufficient to detect an invalid year setting. NOTE: If code is
 - * added to check the month and date in the future for some reason,
 - * Feb 29 must be allowed to shift to Mar 1 when setting the year.
 - */
 - {
 - Calendar cal = (Calendar)this.clone();
 - cal.setLenient(true);
 - int era = cal.get(ERA);
 - Date d = cal.getTime();
 - /* Perform a binary search, with the invariant that lowGood is a
 - * valid year, and highBad is an out of range year.
 - */
 - int lowGood = LEAST_MAX_VALUES[YEAR];
 - int highBad = MAX_VALUES[YEAR] + 1;
 - while ((lowGood + 1) < highBad) {
 - int y = (lowGood + highBad) / 2;
 - cal.set(YEAR, y);
 - if (cal.get(YEAR) == y && cal.get(ERA) == era) {
 - lowGood = y;
 - } else {
 - highBad = y;
 - cal.setTime(d); // Restore original fields
 - }
 - }
 - return lowGood;
 - }
 - // and we know none of the other fields have variable maxima in
 - // GregorianCalendar, so we can just return the fixed maximum
 - default:
 - return getMaximum(field);
 - }
 - }
 - //////////////////////
 - // Proposed public API
 - //////////////////////
 - /**
 - * Return true if the current time for this Calendar is in Daylignt
 - * Savings Time.
 - *
 - * Note -- MAKE THIS PUBLIC AT THE NEXT API CHANGE. POSSIBLY DEPRECATE
 - * AND REMOVE TimeZone.inDaylightTime().
 - */
 - boolean inDaylightTime() {
 - if (!getTimeZone().useDaylightTime()) return false;
 - complete(); // Force update of DST_OFFSET field
 - return internalGet(DST_OFFSET) != 0;
 - }
 - /**
 - * Return the year that corresponds to the <code>WEEK_OF_YEAR</code> field.
 - * This may be one year before or after the calendar year stored
 - * in the <code>YEAR</code> field. For example, January 1, 1999 is considered
 - * Friday of week 53 of 1998 (if minimal days in first week is
 - * 2 or less, and the first day of the week is Sunday). Given
 - * these same settings, the ISO year of January 1, 1999 is
 - * 1998.
 - * <p>
 - * Warning: This method will complete all fields.
 - * @return the year corresponding to the <code>WEEK_OF_YEAR</code> field, which
 - * may be one year before or after the <code>YEAR</code> field.
 - * @see #WEEK_OF_YEAR
 - */
 - int getISOYear() {
 - complete();
 - int woy = internalGet(WEEK_OF_YEAR);
 - // Get the ISO year, which matches the week of year. This
 - // may be one year before or after the calendar year.
 - int isoYear = internalGet(YEAR);
 - if (internalGet(MONTH) == Calendar.JANUARY) {
 - if (woy >= 52) {
 - --isoYear;
 - }
 - }
 - else {
 - if (woy == 1) {
 - ++isoYear;
 - }
 - }
 - return isoYear;
 - }
 - /////////////////////////////
 - // Time => Fields computation
 - /////////////////////////////
 - /**
 - * Overrides Calendar
 - * Converts UTC as milliseconds to time field values.
 - * The time is <em>not</em>
 - * recomputed first; to recompute the time, then the fields, call the
 - * <code>complete</code> method.
 - * @see Calendar#complete
 - */
 - protected void computeFields() {
 - int rawOffset = getTimeZone().getRawOffset();
 - long localMillis = time + rawOffset;
 - /* Check for very extreme values -- millis near Long.MIN_VALUE or
 - * Long.MAX_VALUE. For these values, adding the zone offset can push
 - * the millis past MAX_VALUE to MIN_VALUE, or vice versa. This produces
 - * the undesirable effect that the time can wrap around at the ends,
 - * yielding, for example, a Date(Long.MAX_VALUE) with a big BC year
 - * (should be AD). Handle this by pinning such values to Long.MIN_VALUE
 - * or Long.MAX_VALUE. - liu 8/11/98 bug 4149677 */
 - if (time > 0 && localMillis < 0 && rawOffset > 0) {
 - localMillis = Long.MAX_VALUE;
 - } else if (time < 0 && localMillis > 0 && rawOffset < 0) {
 - localMillis = Long.MIN_VALUE;
 - }
 - // Time to fields takes the wall millis (Standard or DST).
 - timeToFields(localMillis, false);
 - int era = internalGetEra();
 - int year = internalGet(YEAR);
 - int month = internalGet(MONTH);
 - int date = internalGet(DATE);
 - int dayOfWeek = internalGet(DAY_OF_WEEK);
 - long days = (long) (localMillis / ONE_DAY);
 - int millisInDay = (int) (localMillis - (days * ONE_DAY));
 - if (millisInDay < 0) millisInDay += ONE_DAY;
 - // Call getOffset() to get the TimeZone offset. The millisInDay value must
 - // be standard local millis.
 - int dstOffset = getTimeZone().getOffset(era,year,month,date,dayOfWeek,millisInDay,
 - monthLength(month), prevMonthLength(month))
 - - rawOffset;
 - // Adjust our millisInDay for DST, if necessary.
 - millisInDay += dstOffset;
 - // If DST has pushed us into the next day, we must call timeToFields() again.
 - // This happens in DST between 12:00 am and 1:00 am every day. The call to
 - // timeToFields() will give the wrong day, since the Standard time is in the
 - // previous day.
 - if (millisInDay >= ONE_DAY) {
 - long dstMillis = localMillis + dstOffset;
 - millisInDay -= ONE_DAY;
 - // As above, check for and pin extreme values
 - if (localMillis > 0 && dstMillis < 0 && dstOffset > 0) {
 - dstMillis = Long.MAX_VALUE;
 - } else if (localMillis < 0 && dstMillis > 0 && dstOffset < 0) {
 - dstMillis = Long.MIN_VALUE;
 - }
 - timeToFields(dstMillis, false);
 - }
 - // Fill in all time-related fields based on millisInDay. Call internalSet()
 - // so as not to perturb flags.
 - internalSet(MILLISECOND, millisInDay % 1000);
 - millisInDay /= 1000;
 - internalSet(SECOND, millisInDay % 60);
 - millisInDay /= 60;
 - internalSet(MINUTE, millisInDay % 60);
 - millisInDay /= 60;
 - internalSet(HOUR_OF_DAY, millisInDay);
 - internalSet(AM_PM, millisInDay / 12); // Assume AM == 0
 - internalSet(HOUR, millisInDay % 12);
 - internalSet(ZONE_OFFSET, rawOffset);
 - internalSet(DST_OFFSET, dstOffset);
 - // Careful here: We are manually setting the time stamps[] flags to
 - // INTERNALLY_SET, so we must be sure that the above code actually does
 - // set all these fields.
 - for (int i=0; i<FIELD_COUNT; ++i) {
 - stamp[i] = INTERNALLY_SET;
 - isSet[i] = true; // Remove later
 - }
 - }
 - /**
 - * Convert the time as milliseconds to the date fields. Millis must be
 - * given as local wall millis to get the correct local day. For example,
 - * if it is 11:30 pm Standard, and DST is in effect, the correct DST millis
 - * must be passed in to get the right date.
 - * <p>
 - * Fields that are completed by this method: ERA, YEAR, MONTH, DATE,
 - * DAY_OF_WEEK, DAY_OF_YEAR, WEEK_OF_YEAR, WEEK_OF_MONTH,
 - * DAY_OF_WEEK_IN_MONTH.
 - * @param theTime the time in wall millis (either Standard or DST),
 - * whichever is in effect
 - * @param quick if true, only compute the ERA, YEAR, MONTH, DATE,
 - * DAY_OF_WEEK, and DAY_OF_YEAR.
 - */
 - private final void timeToFields(long theTime, boolean quick) {
 - int rawYear, year, month, date, dayOfWeek, dayOfYear, weekCount, era;
 - boolean isLeap;
 - // Compute the year, month, and day of month from the given millis
 - if (theTime >= normalizedGregorianCutover) {
 - // The Gregorian epoch day is zero for Monday January 1, year 1.
 - long gregorianEpochDay = millisToJulianDay(theTime) - JAN_1_1_JULIAN_DAY;
 - // Here we convert from the day number to the multiple radix
 - // representation. We use 400-year, 100-year, and 4-year cycles.
 - // For example, the 4-year cycle has 4 years + 1 leap day; giving
 - // 1461 == 365*4 + 1 days.
 - int[] rem = new int[1];
 - int n400 = floorDivide(gregorianEpochDay, 146097, rem); // 400-year cycle length
 - int n100 = floorDivide(rem[0], 36524, rem); // 100-year cycle length
 - int n4 = floorDivide(rem[0], 1461, rem); // 4-year cycle length
 - int n1 = floorDivide(rem[0], 365, rem);
 - rawYear = 400*n400 + 100*n100 + 4*n4 + n1;
 - dayOfYear = rem[0]; // zero-based day of year
 - if (n100 == 4 || n1 == 4) {
 - dayOfYear = 365; // Dec 31 at end of 4- or 400-yr cycle
 - } else {
 - ++rawYear;
 - }
 - isLeap = ((rawYear&0x3) == 0) && // equiv. to (rawYear%4 == 0)
 - (rawYear%100 != 0 || rawYear%400 == 0);
 - // Gregorian day zero is a Monday
 - dayOfWeek = (int)((gregorianEpochDay+1) % 7);
 - }
 - else {
 - // The Julian epoch day (not the same as Julian Day)
 - // is zero on Saturday December 30, 0 (Gregorian).
 - long julianEpochDay = millisToJulianDay(theTime) - (JAN_1_1_JULIAN_DAY - 2);
 - rawYear = (int) floorDivide(4*julianEpochDay + 1464, 1461);
 - // Compute the Julian calendar day number for January 1, rawYear
 - long january1 = 365*(rawYear-1) + floorDivide(rawYear-1, 4);
 - dayOfYear = (int)(julianEpochDay - january1); // 0-based
 - // Julian leap years occurred historically every 4 years starting
 - // with 8 AD. Before 8 AD the spacing is irregular; every 3 years
 - // from 45 BC to 9 BC, and then none until 8 AD. However, we don't
 - // implement this historical detail; instead, we implement the
 - // computatinally cleaner proleptic calendar, which assumes
 - // consistent 4-year cycles throughout time.
 - isLeap = ((rawYear&0x3) == 0); // equiv. to (rawYear%4 == 0)
 - // Julian calendar day zero is a Saturday
 - dayOfWeek = (int)((julianEpochDay-1) % 7);
 - }
 - // Common Julian/Gregorian calculation
 - int correction = 0;
 - int march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
 - if (dayOfYear >= march1) correction = isLeap ? 1 : 2;
 - month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
 - date = dayOfYear -
 - (isLeap ? LEAP_NUM_DAYS[month] : NUM_DAYS[month]) + 1; // one-based DOM
 - // Normalize day of week
 - dayOfWeek += (dayOfWeek < 0) ? (SUNDAY+7) : SUNDAY;
 - era = AD;
 - year = rawYear;
 - if (year < 1) {
 - era = BC;
 - year = 1 - year;
 - }
 - internalSet(ERA, era);
 - internalSet(YEAR, year);
 - internalSet(MONTH, month + JANUARY); // 0-based
 - internalSet(DATE, date);
 - internalSet(DAY_OF_WEEK, dayOfWeek);
 - internalSet(DAY_OF_YEAR, ++dayOfYear); // Convert from 0-based to 1-based
 - if (quick) {
 - return;
 - }
 - // WEEK_OF_YEAR start
 - // Compute the week of the year. Valid week numbers run from 1 to 52
 - // or 53, depending on the year, the first day of the week, and the
 - // minimal days in the first week. Days at the start of the year may
 - // fall into the last week of the previous year; days at the end of
 - // the year may fall into the first week of the next year.
 - int relDow = (dayOfWeek + 7 - getFirstDayOfWeek()) % 7; // 0..6
 - int relDowJan1 = (dayOfWeek - dayOfYear + 701 - getFirstDayOfWeek()) % 7; // 0..6
 - int woy = (dayOfYear - 1 + relDowJan1) / 7; // 0..53
 - if ((7 - relDowJan1) >= getMinimalDaysInFirstWeek()) {
 - ++woy;
 - }
 - // XXX: The calculation of dayOfYear does not take into account
 - // Gregorian cut over date. The next if statement depends on that
 - // assumption.
 - if (dayOfYear > 359) { // Fast check which eliminates most cases
 - // Check to see if we are in the last week; if so, we need
 - // to handle the case in which we are the first week of the
 - // next year.
 - int lastDoy = yearLength();
 - int lastRelDow = (relDow + lastDoy - dayOfYear) % 7;
 - if (lastRelDow < 0) {
 - lastRelDow += 7;
 - }
 - if (((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) &&
 - ((dayOfYear + 7 - relDow) > lastDoy)) {
 - woy = 1;
 - }
 - }
 - else if (woy == 0) {
 - // We are the last week of the previous year.
 - int prevDoy = dayOfYear + yearLength(rawYear - 1);
 - woy = weekNumber(prevDoy, dayOfWeek);
 - }
 - internalSet(WEEK_OF_YEAR, woy);
 - // WEEK_OF_YEAR end
 - internalSet(WEEK_OF_MONTH, weekNumber(date, dayOfWeek));
 - internalSet(DAY_OF_WEEK_IN_MONTH, (date-1) / 7 + 1);
 - }
 - /////////////////////////////
 - // Fields => Time computation
 - /////////////////////////////
 - /**
 - * Overrides Calendar
 - * Converts time field values to UTC as milliseconds.
 - * @exception IllegalArgumentException if any fields are invalid.
 - */
 - protected void computeTime() {
 - if (!isLenient() && !validateFields())
 - throw new IllegalArgumentException();
 - // This function takes advantage of the fact that unset fields in
 - // the time field list have a value of zero.
 - // The year defaults to the epoch start.
 - int year = (stamp[YEAR] != UNSET) ? internalGet(YEAR) : EPOCH_YEAR;
 - int era = AD;
 - if (stamp[ERA] != UNSET) {
 - era = internalGet(ERA);
 - if (era == BC)
 - year = 1 - year;
 - // Even in lenient mode we disallow ERA values other than AD & BC
 - else if (era != AD)
 - throw new IllegalArgumentException("Invalid era");
 - }
 - // First, use the year to determine whether to use the Gregorian or the
 - // Julian calendar. If the year is not the year of the cutover, this
 - // computation will be correct. But if the year is the cutover year,
 - // this may be incorrect. In that case, assume the Gregorian calendar,
 - // make the computation, and then recompute if the resultant millis
 - // indicate the wrong calendar has been assumed.
 - // A date such as Oct. 10, 1582 does not exist in a Gregorian calendar
 - // with the default changeover of Oct. 15, 1582, since in such a
 - // calendar Oct. 4 (Julian) is followed by Oct. 15 (Gregorian). This
 - // algorithm will interpret such a date using the Julian calendar,
 - // yielding Oct. 20, 1582 (Gregorian).
 - boolean isGregorian = year >= gregorianCutoverYear;
 - long julianDay = computeJulianDay(isGregorian, year);
 - long millis = julianDayToMillis(julianDay);
 - // The following check handles portions of the cutover year BEFORE the
 - // cutover itself happens. The check for the julianDate number is for a
 - // rare case; it's a hardcoded number, but it's efficient. The given
 - // Julian day number corresponds to Dec 3, 292269055 BC, which
 - // corresponds to millis near Long.MIN_VALUE. The need for the check
 - // arises because for extremely negative Julian day numbers, the millis
 - // actually overflow to be positive values. Without the check, the
 - // initial date is interpreted with the Gregorian calendar, even when
 - // the cutover doesn't warrant it.
 - if (isGregorian != (millis >= normalizedGregorianCutover) &&
 - julianDay != -106749550580L) { // See above
 - julianDay = computeJulianDay(!isGregorian, year);
 - millis = julianDayToMillis(julianDay);
 - }
 - // Do the time portion of the conversion.
 - int millisInDay = 0;
 - // Find the best set of fields specifying the time of day. There
 - // are only two possibilities here; the HOUR_OF_DAY or the
 - // AM_PM and the HOUR.
 - int hourOfDayStamp = stamp[HOUR_OF_DAY];
 - int hourStamp = stamp[HOUR];
 - int bestStamp = (hourStamp > hourOfDayStamp) ? hourStamp : hourOfDayStamp;
 - // Hours
 - if (bestStamp != UNSET) {
 - if (bestStamp == hourOfDayStamp)
 - // Don't normalize here; let overflow bump into the next period.
 - // This is consistent with how we handle other fields.
 - millisInDay += internalGet(HOUR_OF_DAY);
 - else {
 - // Don't normalize here; let overflow bump into the next period.
 - // This is consistent with how we handle other fields.
 - millisInDay += internalGet(HOUR);
 - millisInDay += 12 * internalGet(AM_PM); // Default works for unset AM_PM
 - }
 - }
 - // We use the fact that unset == 0; we start with millisInDay
 - // == HOUR_OF_DAY.
 - millisInDay *= 60;
 - millisInDay += internalGet(MINUTE); // now have minutes
 - millisInDay *= 60;
 - millisInDay += internalGet(SECOND); // now have seconds
 - millisInDay *= 1000;
 - millisInDay += internalGet(MILLISECOND); // now have millis
 - // Compute the time zone offset and DST offset. There are two potential
 - // ambiguities here. We'll assume a 2:00 am (wall time) switchover time
 - // for discussion purposes here.
 - // 1. The transition into DST. Here, a designated time of 2:00 am - 2:59 am
 - // can be in standard or in DST depending. However, 2:00 am is an invalid
 - // representation (the representation jumps from 1:59:59 am Std to 3:00:00 am DST).
 - // We assume standard time.
 - // 2. The transition out of DST. Here, a designated time of 1:00 am - 1:59 am
 - // can be in standard or DST. Both are valid representations (the rep
 - // jumps from 1:59:59 DST to 1:00:00 Std).
 - // Again, we assume standard time.
 - // We use the TimeZone object, unless the user has explicitly set the ZONE_OFFSET
 - // or DST_OFFSET fields; then we use those fields.
 - TimeZone zone = getTimeZone();
 - int zoneOffset = (stamp[ZONE_OFFSET] >= MINIMUM_USER_STAMP)
 - /*isSet(ZONE_OFFSET) && userSetZoneOffset*/ ?
 - internalGet(ZONE_OFFSET) : zone.getRawOffset();
 - // Now add date and millisInDay together, to make millis contain local wall
 - // millis, with no zone or DST adjustments
 - millis += millisInDay;
 - int dstOffset = 0;
 - if (stamp[ZONE_OFFSET] >= MINIMUM_USER_STAMP
 - /*isSet(DST_OFFSET) && userSetDSTOffset*/)
 - dstOffset = internalGet(DST_OFFSET);
 - else {
 - /* Normalize the millisInDay to 0..ONE_DAY-1. If the millis is out
 - * of range, then we must call timeToFields() to recompute our
 - * fields. */
 - int[] normalizedMillisInDay = new int[1];
 - floorDivide(millis, (int)ONE_DAY, normalizedMillisInDay);
 - // We need to have the month, the day, and the day of the week.
 - // Calling timeToFields will compute the MONTH and DATE fields.
 - // If we're lenient then we need to call timeToFields() to
 - // normalize the year, month, and date numbers.
 - int dow;
 - if (isLenient() || stamp[MONTH] == UNSET || stamp[DATE] == UNSET
 - || millisInDay != normalizedMillisInDay[0]) {
 - timeToFields(millis, true); // Use wall time; true == do quick computation
 - dow = internalGet(DAY_OF_WEEK); // DOW is computed by timeToFields
 - }
 - else {
 - // It's tempting to try to use DAY_OF_WEEK here, if it
 - // is set, but we CAN'T. Even if it's set, it might have
 - // been set wrong by the user. We should rely only on
 - // the Julian day number, which has been computed correctly
 - // using the disambiguation algorithm above. [LIU]
 - dow = julianDayToDayOfWeek(julianDay);
 - }
 - // It's tempting to try to use DAY_OF_WEEK here, if it
 - // is set, but we CAN'T. Even if it's set, it might have
 - // been set wrong by the user. We should rely only on
 - // the Julian day number, which has been computed correctly
 - // using the disambiguation algorithm above. [LIU]
 - dstOffset = zone.getOffset(era,
 - internalGet(YEAR),
 - internalGet(MONTH),
 - internalGet(DATE),
 - dow,
 - normalizedMillisInDay[0],
 - monthLength(internalGet(MONTH)),
 - prevMonthLength(internalGet(MONTH))) -
 - zoneOffset;
 - // Note: Because we pass in wall millisInDay, rather than
 - // standard millisInDay, we interpret "1:00 am" on the day
 - // of cessation of DST as "1:00 am Std" (assuming the time
 - // of cessation is 2:00 am).
 - }
 - // Store our final computed GMT time, with timezone adjustments.
 - time = millis - zoneOffset - dstOffset;
 - }
 - /**
 - * Compute the Julian day number under either the Gregorian or the
 - * Julian calendar, using the given year and the remaining fields.
 - * @param isGregorian if true, use the Gregorian calendar
 - * @param year the adjusted year number, with 0 indicating the
 - * year 1 BC, -1 indicating 2 BC, etc.
 - * @return the Julian day number
 - */
 - private final long computeJulianDay(boolean isGregorian, int year) {
 - int month = 0, date = 0, y;
 - long millis = 0;
 - // Find the most recent group of fields specifying the day within
 - // the year. These may be any of the following combinations:
 - // MONTH + DAY_OF_MONTH
 - // MONTH + WEEK_OF_MONTH + DAY_OF_WEEK
 - // MONTH + DAY_OF_WEEK_IN_MONTH + DAY_OF_WEEK
 - // DAY_OF_YEAR
 - // WEEK_OF_YEAR + DAY_OF_WEEK
 - // We look for the most recent of the fields in each group to determine
 - // the age of the group. For groups involving a week-related field such
 - // as WEEK_OF_MONTH, DAY_OF_WEEK_IN_MONTH, or WEEK_OF_YEAR, both the
 - // week-related field and the DAY_OF_WEEK must be set for the group as a
 - // whole to be considered. (See bug 4153860 - liu 7/24/98.)
 - int dowStamp = stamp[DAY_OF_WEEK];
 - int monthStamp = stamp[MONTH];
 - int domStamp = stamp[DAY_OF_MONTH];
 - int womStamp = aggregateStamp(stamp[WEEK_OF_MONTH], dowStamp);
 - int dowimStamp = aggregateStamp(stamp[DAY_OF_WEEK_IN_MONTH], dowStamp);
 - int doyStamp = stamp[DAY_OF_YEAR];
 - int woyStamp = aggregateStamp(stamp[WEEK_OF_YEAR], dowStamp);
 - int bestStamp = domStamp;
 - if (womStamp > bestStamp) bestStamp = womStamp;
 - if (dowimStamp > bestStamp) bestStamp = dowimStamp;
 - if (doyStamp > bestStamp) bestStamp = doyStamp;
 - if (woyStamp > bestStamp) bestStamp = woyStamp;
 - /* No complete combination exists. Look for WEEK_OF_MONTH,
 - * DAY_OF_WEEK_IN_MONTH, or WEEK_OF_YEAR alone. Treat DAY_OF_WEEK alone
 - * as DAY_OF_WEEK_IN_MONTH.
 - */
 - if (bestStamp == UNSET) {
 - womStamp = stamp[WEEK_OF_MONTH];
 - dowimStamp = Math.max(stamp[DAY_OF_WEEK_IN_MONTH], dowStamp);
 - woyStamp = stamp[WEEK_OF_YEAR];
 - bestStamp = Math.max(Math.max(womStamp, dowimStamp), woyStamp);
 - /* Treat MONTH alone or no fields at all as DAY_OF_MONTH. This may
 - * result in bestStamp = domStamp = UNSET if no fields are set,
 - * which indicates DAY_OF_MONTH.
 - */
 - if (bestStamp == UNSET) {
 - bestStamp = domStamp = monthStamp;
 - }
 - }
 - boolean useMonth = false;
 - if (bestStamp == domStamp ||
 - bestStamp == womStamp ||
 - bestStamp == dowimStamp) {
 - useMonth = true;
 - // We have the month specified. Make it 0-based for the algorithm.
 - month = (monthStamp != UNSET) ? internalGet(MONTH) - JANUARY : 0;
 - // If the month is out of range, adjust it into range
 - if (month < 0 || month > 11) {
 - int[] rem = new int[1];
 - year += floorDivide(month, 12, rem);
 - month = rem[0];
 - }
 - }
 - boolean isLeap = year%4 == 0;
 - y = year - 1;
 - long julianDay = 365L*y + floorDivide(y, 4) + (JAN_1_1_JULIAN_DAY - 3);
 - if (isGregorian) {
 - isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
 - // Add 2 because Gregorian calendar starts 2 days after Julian calendar
 - julianDay += floorDivide(y, 400) - floorDivide(y, 100) + 2;
 - }
 - // At this point julianDay is the 0-based day BEFORE the first day of
 - // January 1, year 1 of the given calendar. If julianDay == 0, it
 - // specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
 - // or Gregorian).
 - if (useMonth) {
 - julianDay += isLeap ? LEAP_NUM_DAYS[month] : NUM_DAYS[month];
 - if (bestStamp == domStamp) {
 - date = (stamp[DAY_OF_MONTH] != UNSET) ? internalGet(DAY_OF_MONTH) : 1;
 - }
 - else { // assert(bestStamp == womStamp || bestStamp == dowimStamp)
 - // Compute from day of week plus week number or from the day of
 - // week plus the day of week in month. The computations are
 - // almost identical.
 - // Find the day of the week for the first of this month. This
 - // is zero-based, with 0 being the locale-specific first day of
 - // the week. Add 1 to get the 1st day of month. Subtract
 - // getFirstDayOfWeek() to make 0-based.
 - int fdm = julianDayToDayOfWeek(julianDay + 1) - getFirstDayOfWeek();
 - if (fdm < 0) fdm += 7;
 - // Find the start of the first week. This will be a date from
 - // 1..-6. It represents the locale-specific first day of the
 - // week of the first day of the month, ignoring minimal days in
 - // first week.
 - date = 1 - fdm + (dowStamp != UNSET ?
 - (internalGet(DAY_OF_WEEK) - getFirstDayOfWeek()) : 0);
 - if (bestStamp == womStamp) {
 - // Adjust for minimal days in first week.
 - if ((7 - fdm) < getMinimalDaysInFirstWeek()) date += 7;
 - // Now adjust for the week number.
 - date += 7 * (internalGet(WEEK_OF_MONTH) - 1);
 - }
 - else { // assert(bestStamp == dowimStamp)
 - // Adjust into the month, if needed.
 - if (date < 1) date += 7;
 - // We are basing this on the day-of-week-in-month. The only
 - // trickiness occurs if the day-of-week-in-month is
 - // negative.
 - int dim = stamp[DAY_OF_WEEK_IN_MONTH] != UNSET ?
 - internalGet(DAY_OF_WEEK_IN_MONTH) : 1;
 - if (dim >= 0) date += 7*(dim - 1);
 - else {
 - // Move date to the last of this day-of-week in this
 - // month, then back up as needed. If dim==-1, we don't
 - // back up at all. If dim==-2, we back up once, etc.
 - // Don't back up past the first of the given day-of-week
 - // in this month. Note that we handle -2, -3,
 - // etc. correctly, even though values < -1 are
 - // technically disallowed.
 - date += ((monthLength(internalGet(MONTH), year) - date) / 7 + dim + 1) * 7;
 - }
 - }
 - }
 - julianDay += date;
 - }
 - else {
 - // assert(bestStamp == doyStamp || bestStamp == woyStamp ||
 - // bestStamp == UNSET). In the last case we should use January 1.
 - // No month, start with January 0 (day before Jan 1), then adjust.
 - if (bestStamp == doyStamp) {
 - julianDay += internalGet(DAY_OF_YEAR);
 - }
 - else { // assert(bestStamp == woyStamp)
 - // Compute from day of week plus week of year
 - // Find the day of the week for the first of this year. This
 - // is zero-based, with 0 being the locale-specific first day of
 - // the week. Add 1 to get the 1st day of month. Subtract
 - // getFirstDayOfWeek() to make 0-based.
 - int fdy = julianDayToDayOfWeek(julianDay + 1) - getFirstDayOfWeek();
 - if (fdy < 0) fdy += 7;
 - // Find the start of the first week. This may be a valid date
 - // from 1..7, or a date before the first, from 0..-6. It
 - // represents the locale-specific first day of the week
 - // of the first day of the year.
 - // First ignore the minimal days in first week.
 - date = 1 - fdy + (dowStamp != UNSET ?
 - (internalGet(DAY_OF_WEEK) - getFirstDayOfWeek()) : 0);
 - // Adjust for minimal days in first week.
 - if ((7 - fdy) < getMinimalDaysInFirstWeek()) date += 7;
 - // Now adjust for the week number.
 - date += 7 * (internalGet(WEEK_OF_YEAR) - 1);
 - julianDay += date;
 - }
 - }
 - return julianDay;
 - }
 - /////////////////
 - // Implementation
 - /////////////////
 - /**
 - * Converts time as milliseconds to Julian day.
 - * @param millis the given milliseconds.
 - * @return the Julian day number.
 - */
 - private static final long millisToJulianDay(long millis) {
 - return EPOCH_JULIAN_DAY + floorDivide(millis, ONE_DAY);
 - }
 - /**
 - * Converts Julian day to time as milliseconds.
 - * @param julian the given Julian day number.
 - * @return time as milliseconds.
 - */
 - private static final long julianDayToMillis(long julian) {
 - return (julian - EPOCH_JULIAN_DAY) * ONE_DAY;
 - }
 - private static final int julianDayToDayOfWeek(long julian) {
 - // If julian is negative, then julian%7 will be negative, so we adjust
 - // accordingly. We add 1 because Julian day 0 is Monday.
 - int dayOfWeek = (int)((julian + 1) % 7);
 - return dayOfWeek + ((dayOfWeek < 0) ? (7 + SUNDAY) : SUNDAY);
 - }
 - /**
 - * Divide two long integers, returning the floor of the quotient.
 - * <p>
 - * Unlike the built-in division, this is mathematically well-behaved.
 - * E.g., <code>-1/4</code> => 0
 - * but <code>floorDivide(-1,4)</code> => -1.
 - * @param numerator the numerator
 - * @param denominator a divisor which must be > 0
 - * @return the floor of the quotient.
 - */
 - private static final long floorDivide(long numerator, long denominator) {
 - // We do this computation in order to handle
 - // a numerator of Long.MIN_VALUE correctly
 - return (numerator >= 0) ?
 - numerator / denominator :
 - ((numerator + 1) / denominator) - 1;
 - }
 - /**
 - * Divide two integers, returning the floor of the quotient.
 - * <p>
 - * Unlike the built-in division, this is mathematically well-behaved.
 - * E.g., <code>-1/4</code> => 0
 - * but <code>floorDivide(-1,4)</code> => -1.
 - * @param numerator the numerator
 - * @param denominator a divisor which must be > 0
 - * @return the floor of the quotient.
 - */
 - private static final int floorDivide(int numerator, int denominator) {
 - // We do this computation in order to handle
 - // a numerator of Integer.MIN_VALUE correctly
 - return (numerator >= 0) ?
 - numerator / denominator :
 - ((numerator + 1) / denominator) - 1;
 - }
 - /**
 - * Divide two integers, returning the floor of the quotient, and
 - * the modulus remainder.
 - * <p>
 - * Unlike the built-in division, this is mathematically well-behaved.
 - * E.g., <code>-1/4</code> => 0 and <code>-1%4</code> => -1,
 - * but <code>floorDivide(-1,4)</code> => -1 with <code>remainder[0]</code> => 3.
 - * @param numerator the numerator
 - * @param denominator a divisor which must be > 0
 - * @param remainder an array of at least one element in which the value
 - * <code>numerator mod denominator</code> is returned. Unlike <code>numerator
 - * % denominator</code>, this will always be non-negative.
 - * @return the floor of the quotient.
 - */
 - private static final int floorDivide(int numerator, int denominator, int[] remainder) {
 - if (numerator >= 0) {
 - remainder[0] = numerator % denominator;
 - return numerator / denominator;
 - }
 - int quotient = ((numerator + 1) / denominator) - 1;
 - remainder[0] = numerator - (quotient * denominator);
 - return quotient;
 - }
 - /**
 - * Divide two integers, returning the floor of the quotient, and
 - * the modulus remainder.
 - * <p>
 - * Unlike the built-in division, this is mathematically well-behaved.
 - * E.g., <code>-1/4</code> => 0 and <code>-1%4</code> => -1,
 - * but <code>floorDivide(-1,4)</code> => -1 with <code>remainder[0]</code> => 3.
 - * @param numerator the numerator
 - * @param denominator a divisor which must be > 0
 - * @param remainder an array of at least one element in which the value
 - * <code>numerator mod denominator</code> is returned. Unlike <code>numerator
 - * % denominator</code>, this will always be non-negative.
 - * @return the floor of the quotient.
 - */
 - private static final int floorDivide(long numerator, int denominator, int[] remainder) {
 - if (numerator >= 0) {
 - remainder[0] = (int)(numerator % denominator);
 - return (int)(numerator / denominator);
 - }
 - int quotient = (int)(((numerator + 1) / denominator) - 1);
 - remainder[0] = (int)(numerator - (quotient * denominator));
 - return quotient;
 - }
 - /**
 - * Return the pseudo-time-stamp for two fields, given their
 - * individual pseudo-time-stamps. If either of the fields
 - * is unset, then the aggregate is unset. Otherwise, the
 - * aggregate is the later of the two stamps.
 - */
 - private static final int aggregateStamp(int stamp_a, int stamp_b) {
 - return (stamp_a != UNSET && stamp_b != UNSET) ?
 - Math.max(stamp_a, stamp_b) : UNSET;
 - }
 - /**
 - * Return the week number of a day, within a period. This may be the week number in
 - * a year, or the week number in a month. Usually this will be a value >= 1, but if
 - * some initial days of the period are excluded from week 1, because
 - * minimalDaysInFirstWeek is > 1, then the week number will be zero for those
 - * initial days. Requires the day of week for the given date in order to determine
 - * the day of week of the first day of the period.
 - *
 - * @param dayOfPeriod Day-of-year or day-of-month. Should be 1 for first day of period.
 - * @param day Day-of-week for given dayOfPeriod. 1-based with 1=Sunday.
 - * @return Week number, one-based, or zero if the day falls in part of the
 - * month before the first week, when there are days before the first
 - * week because the minimum days in the first week is more than one.
 - */
 - private final int weekNumber(int dayOfPeriod, int dayOfWeek) {
 - // Determine the day of the week of the first day of the period
 - // in question (either a year or a month). Zero represents the
 - // first day of the week on this calendar.
 - int periodStartDayOfWeek = (dayOfWeek - getFirstDayOfWeek() - dayOfPeriod + 1) % 7;
 - if (periodStartDayOfWeek < 0) periodStartDayOfWeek += 7;
 - // Compute the week number. Initially, ignore the first week, which
 - // may be fractional (or may not be). We add periodStartDayOfWeek in
 - // order to fill out the first week, if it is fractional.
 - int weekNo = (dayOfPeriod + periodStartDayOfWeek - 1)/7;
 - // If the first week is long enough, then count it. If
 - // the minimal days in the first week is one, or if the period start
 - // is zero, we always increment weekNo.
 - if ((7 - periodStartDayOfWeek) >= getMinimalDaysInFirstWeek()) ++weekNo;
 - return weekNo;
 - }
 - private final int monthLength(int month, int year) {
 - return isLeapYear(year) ? LEAP_MONTH_LENGTH[month] : MONTH_LENGTH[month];
 - }
 - private final int monthLength(int month) {
 - int year = internalGet(YEAR);
 - if (internalGetEra() == BC) {
 - year = 1-year;
 - }
 - return monthLength(month, year);
 - }
 - /**
 - * Returns the length of the previous month. For January, returns the
 - * arbitrary value 31, which will not be used: This value is passed to
 - * SimpleTimeZone.getOffset(), and if the month is -1 (the month before
 - * January), the day value will be ignored.
 - */
 - private final int prevMonthLength(int month) {
 - return (month > 1) ? monthLength(month - 1) : 31;
 - }
 - private final int yearLength(int year) {
 - return isLeapYear(year) ? 366 : 365;
 - }
 - private final int yearLength() {
 - return isLeapYear(internalGet(YEAR)) ? 366 : 365;
 - }
 - /**
 - * After adjustments such as add(MONTH), add(YEAR), we don't want the
 - * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
 - * 3, we want it to go to Feb 28. Adjustments which might run into this
 - * problem call this method to retain the proper month.
 - */
 - private final void pinDayOfMonth() {
 - int monthLen = monthLength(internalGet(MONTH));
 - int dom = internalGet(DAY_OF_MONTH);
 - if (dom > monthLen) set(DAY_OF_MONTH, monthLen);
 - }
 - /**
 - * Validates the values of the set time fields.
 - */
 - private boolean validateFields() {
 - for (int field = 0; field < FIELD_COUNT; field++) {
 - // Ignore DATE and DAY_OF_YEAR which are handled below
 - if (field != DATE &&
 - field != DAY_OF_YEAR &&
 - isSet(field) &&
 - !boundsCheck(internalGet(field), field))
 - return false;
 - }
 - // Values differ in Least-Maximum and Maximum should be handled
 - // specially.
 - if (isSet(DATE)) {
 - int date = internalGet(DATE);
 - if (date < getMinimum(DATE) ||
 - date > monthLength(internalGet(MONTH))) {
 - return false;
 - }
 - }
 - if (isSet(DAY_OF_YEAR)) {
 - int days = internalGet(DAY_OF_YEAR);
 - if (days < 1 || days > yearLength()) return false;
 - }
 - // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
 - // We've checked against minimum and maximum above already.
 - if (isSet(DAY_OF_WEEK_IN_MONTH) &&
 - 0 == internalGet(DAY_OF_WEEK_IN_MONTH)) return false;
 - return true;
 - }
 - /**
 - * Validates the value of the given time field.
 - */
 - private final boolean boundsCheck(int value, int field) {
 - return value >= getMinimum(field) && value <= getMaximum(field);
 - }
 - /**
 - * Return the day number with respect to the epoch. January 1, 1970 (Gregorian)
 - * is day zero.
 - */
 - private final long getEpochDay() {
 - complete();
 - // Divide by 1000 (convert to seconds) in order to prevent overflow when
 - // dealing with Date(Long.MIN_VALUE) and Date(Long.MAX_VALUE).
 - long wallSec = time1000 + (internalGet(ZONE_OFFSET) + internalGet(DST_OFFSET))/1000;
 - return floorDivide(wallSec, ONE_DAY1000);
 - }
 - /**
 - * Return the ERA. We need a special method for this because the
 - * default ERA is AD, but a zero (unset) ERA is BC.
 - */
 - private final int internalGetEra() {
 - return isSet(ERA) ? internalGet(ERA) : AD;
 - }
 - }