- /*
- * @(#)Float.java 1.94 04/05/11
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.lang;
-
- import sun.misc.FloatingDecimal;
- import sun.misc.FpUtils;
- import sun.misc.FloatConsts;
- import sun.misc.DoubleConsts;
-
- /**
- * The <code>Float</code> class wraps a value of primitive type
- * <code>float</code> in an object. An object of type
- * <code>Float</code> contains a single field whose type is
- * <code>float</code>.
- * <p>
- * In addition, this class provides several methods for converting a
- * <code>float</code> to a <code>String</code> and a
- * <code>String</code> to a <code>float</code>, as well as other
- * constants and methods useful when dealing with a
- * <code>float</code>.
- *
- * @author Lee Boynton
- * @author Arthur van Hoff
- * @author Joseph D. Darcy
- * @version 1.94, 05/11/04
- * @since JDK1.0
- */
- public final class Float extends Number implements Comparable<Float> {
- /**
- * A constant holding the positive infinity of type
- * <code>float</code>. It is equal to the value returned by
- * <code>Float.intBitsToFloat(0x7f800000)</code>.
- */
- public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
-
- /**
- * A constant holding the negative infinity of type
- * <code>float</code>. It is equal to the value returned by
- * <code>Float.intBitsToFloat(0xff800000)</code>.
- */
- public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
-
- /**
- * A constant holding a Not-a-Number (NaN) value of type
- * <code>float</code>. It is equivalent to the value returned by
- * <code>Float.intBitsToFloat(0x7fc00000)</code>.
- */
- public static final float NaN = 0.0f / 0.0f;
-
- /**
- * A constant holding the largest positive finite value of type
- * <code>float</code>, (2-2<sup>-23</sup>)·2<sup>127</sup>.
- * It is equal to the hexadecimal floating-point literal
- * <code>0x1.fffffeP+127f</code> and also equal to
- * <code>Float.intBitsToFloat(0x7f7fffff)</code>.
- */
- public static final float MAX_VALUE = 3.4028235e+38f; // 0x1.fffffeP+127f
-
- /**
- * A constant holding the smallest positive nonzero value of type
- * <code>float</code>, 2<sup>-149</sup>. It is equal to the
- * hexadecimal floating-point literal <code>0x0.000002P-126f</code>
- * and also equal to <code>Float.intBitsToFloat(0x1)</code>.
- */
- public static final float MIN_VALUE = 1.4e-45f; // 0x0.000002P-126f
-
- /**
- * The number of bits used to represent a <tt>float</tt> value.
- *
- * @since 1.5
- */
- public static final int SIZE = 32;
-
- /**
- * The <code>Class</code> instance representing the primitive type
- * <code>float</code>.
- *
- * @since JDK1.1
- */
- public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
-
- /**
- * Returns a string representation of the <code>float</code>
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "<code>NaN</code>".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is
- * negative, the first character of the result is
- * '<code>-</code>' (<code>'\u002D'</code>); if the sign is
- * positive, no sign character appears in the result. As for
- * the magnitude <i>m</i>:
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * <code>"Infinity"</code> thus, positive infinity produces
- * the result <code>"Infinity"</code> and negative infinity
- * produces the result <code>"-Infinity"</code>.
- * <li>If <i>m</i> is zero, it is represented by the characters
- * <code>"0.0"</code> thus, negative zero produces the result
- * <code>"-0.0"</code> and positive zero produces the result
- * <code>"0.0"</code>.
- * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
- * less than 10<sup>7</sup>, then it is represented as the
- * integer part of <i>m</i>, in decimal form with no leading
- * zeroes, followed by '<code>.</code>'
- * (<code>'\u002E'</code>), followed by one or more
- * decimal digits representing the fractional part of
- * <i>m</i>.
- * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in
- * so-called "computerized scientific notation." Let <i>n</i>
- * be the unique integer such that 10<sup><i>n</i> </sup><=
- * <i>m</i> < 10<sup><i>n</i>+1</sup> then let <i>a</i>
- * be the mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 <= <i>a</i> < 10.
- * The magnitude is then represented as the integer part of
- * <i>a</i>, as a single decimal digit, followed by
- * '<code>.</code>' (<code>'\u002E'</code>), followed by
- * decimal digits representing the fractional part of
- * <i>a</i>, followed by the letter '<code>E</code>'
- * (<code>'\u0045'</code>), followed by a representation
- * of <i>n</i> as a decimal integer, as produced by the
- * method <code>{@link
- * java.lang.Integer#toString(int)}</code>.
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit
- * to represent the fractional part, and beyond that as many, but
- * only as many, more digits as are needed to uniquely distinguish
- * the argument value from adjacent values of type
- * <code>float</code>. That is, suppose that <i>x</i> is the
- * exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero
- * argument <i>f</i>. Then <i>f</i> must be the <code>float</code>
- * value nearest to <i>x</i> or, if two <code>float</code> values are
- * equally close to <i>x</i>, then <i>f</i> must be one of
- * them and the least significant bit of the significand of
- * <i>f</i> must be <code>0</code>.
- * <p>
- * To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param f the float to be converted.
- * @return a string representation of the argument.
- */
- public static String toString(float f) {
- return new FloatingDecimal(f).toJavaFormatString();
- }
-
- /**
- * Returns a hexadecimal string representation of the
- * <code>float</code> argument. All characters mentioned below are
- * ASCII characters.
- *
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "<code>NaN</code>".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '<code>-</code>'
- * (<code>'\u002D'</code>); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
- *
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the string
- * <code>"Infinity"</code> thus, positive infinity produces the
- * result <code>"Infinity"</code> and negative infinity produces
- * the result <code>"-Infinity"</code>.
- *
- * <li>If <i>m</i> is zero, it is represented by the string
- * <code>"0x0.0p0"</code> thus, negative zero produces the result
- * <code>"-0x0.0p0"</code> and positive zero produces the result
- * <code>"0x0.0p0"</code>.
- *
- * <li>If <i>m</i> is a <code>float</code> value with a
- * normalized representation, substrings are used to represent the
- * significand and exponent fields. The significand is
- * represented by the characters <code>"0x1."</code>
- * followed by a lowercase hexadecimal representation of the rest
- * of the significand as a fraction. Trailing zeros in the
- * hexadecimal representation are removed unless all the digits
- * are zero, in which case a single zero is used. Next, the
- * exponent is represented by <code>"p"</code> followed
- * by a decimal string of the unbiased exponent as if produced by
- * a call to {@link Integer#toString(int) Integer.toString} on the
- * exponent value.
- *
- * <li>If <i>m</i> is a <code>float</code> value with a subnormal
- * representation, the significand is represented by the
- * characters <code>"0x0."</code> followed by a
- * hexadecimal representation of the rest of the significand as a
- * fraction. Trailing zeros in the hexadecimal representation are
- * removed. Next, the exponent is represented by
- * <code>"p-126"</code>. Note that there must be at
- * least one nonzero digit in a subnormal significand.
- *
- * </ul>
- *
- * </ul>
- *
- * <table border>
- * <caption><h3>Examples</h3></caption>
- * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
- * <tr><td><code>1.0</code></td> <td><code>0x1.0p0</code></td>
- * <tr><td><code>-1.0</code></td> <td><code>-0x1.0p0</code></td>
- * <tr><td><code>2.0</code></td> <td><code>0x1.0p1</code></td>
- * <tr><td><code>3.0</code></td> <td><code>0x1.8p1</code></td>
- * <tr><td><code>0.5</code></td> <td><code>0x1.0p-1</code></td>
- * <tr><td><code>0.25</code></td> <td><code>0x1.0p-2</code></td>
- * <tr><td><code>Float.MAX_VALUE</code></td>
- * <td><code>0x1.fffffep127</code></td>
- * <tr><td><code>Minimum Normal Value</code></td>
- * <td><code>0x1.0p-126</code></td>
- * <tr><td><code>Maximum Subnormal Value</code></td>
- * <td><code>0x0.fffffep-126</code></td>
- * <tr><td><code>Float.MIN_VALUE</code></td>
- * <td><code>0x0.000002p-126</code></td>
- * </table>
- * @param f the <code>float</code> to be converted.
- * @return a hex string representation of the argument.
- * @since 1.5
- * @author Joseph D. Darcy
- */
- public static String toHexString(float f) {
- if (Math.abs(f) < FloatConsts.MIN_NORMAL
- && f != 0.0f ) {// float subnormal
- // Adjust exponent to create subnormal double, then
- // replace subnormal double exponent with subnormal float
- // exponent
- String s = Double.toHexString(FpUtils.scalb((double)f,
- /* -1022+126 */
- DoubleConsts.MIN_EXPONENT-
- FloatConsts.MIN_EXPONENT));
- return s.replaceFirst("p-1022$", "p-126");
- }
- else // double string will be the same as float string
- return Double.toHexString(f);
- }
-
- /**
- * Returns a <code>Float</code> object holding the
- * <code>float</code> value represented by the argument string
- * <code>s</code>.
- *
- * <p>If <code>s</code> is <code>null</code>, then a
- * <code>NullPointerException</code> is thrown.
- *
- * <p>Leading and trailing whitespace characters in <code>s</code>
- * are ignored. Whitespace is removed as if by the {@link
- * String#trim} method; that is, both ASCII space and control
- * characters are removed. The rest of <code>s</code> should
- * constitute a <i>FloatValue</i> as described by the lexical
- * syntax rules:
- *
- * <blockquote>
- * <dl>
- * <dt><i>FloatValue:</i>
- * <dd><i>Sign<sub>opt</sub></i> <code>NaN</code>
- * <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code>
- * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
- * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
- * <dd><i>SignedInteger</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>HexFloatingPointLiteral</i>:
- * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>HexSignificand:</i>
- * <dd><i>HexNumeral</i>
- * <dd><i>HexNumeral</i> <code>.</code>
- * <dd><code>0x</code> <i>HexDigits<sub>opt</sub>
- * </i><code>.</code><i> HexDigits</i>
- * <dd><code>0X</code><i> HexDigits<sub>opt</sub>
- * </i><code>.</code> <i>HexDigits</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>BinaryExponent:</i>
- * <dd><i>BinaryExponentIndicator SignedInteger</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>BinaryExponentIndicator:</i>
- * <dd><code>p</code>
- * <dd><code>P</code>
- * </dl>
- *
- * </blockquote>
- *
- * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
- * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
- * <i>FloatTypeSuffix</i> are as defined in the lexical structure
- * sections of the of the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>. If <code>s</code> does not have the form of
- * a <i>FloatValue</i>, then a <code>NumberFormatException</code>
- * is thrown. Otherwise, <code>s</code> is regarded as
- * representing an exact decimal value in the usual
- * "computerized scientific notation" or as an exact
- * hexadecimal value; this exact numerical value is then
- * conceptually converted to an "infinitely precise"
- * binary value that is then rounded to type <code>float</code>
- * by the usual round-to-nearest rule of IEEE 754 floating-point
- * arithmetic, which includes preserving the sign of a zero
- * value. Finally, a <code>Float</code> object representing this
- * <code>float</code> value is returned.
- *
- * <p>To interpret localized string representations of a
- * floating-point value, use subclasses of {@link
- * java.text.NumberFormat}.
- *
- * <p>Note that trailing format specifiers, specifiers that
- * determine the type of a floating-point literal
- * (<code>1.0f</code> is a <code>float</code> value;
- * <code>1.0d</code> is a <code>double</code> value), do
- * <em>not</em> influence the results of this method. In other
- * words, the numerical value of the input string is converted
- * directly to the target floating-point type. In general, the
- * two-step sequence of conversions, string to <code>double</code>
- * followed by <code>double</code> to <code>float</code>, is
- * <em>not</em> equivalent to converting a string directly to
- * <code>float</code>. For example, if first converted to an
- * intermediate <code>double</code> and then to
- * <code>float</code>, the string<br>
- * <code>"1.00000017881393421514957253748434595763683319091796875001d"</code><br>
- * results in the <code>float</code> value
- * <code>1.0000002f</code> if the string is converted directly to
- * <code>float</code>, <code>1.000000<b>1</b>f</code> results.
- *
- * <p>To avoid calling this method on a invalid string and having
- * a <code>NumberFormatException</code> be thrown, the documentation
- * for {@link Double#valueOf Double.valueOf} lists a regular
- * expression which can be used to screen the input.
- *
- * @param s the string to be parsed.
- * @return a <code>Float</code> object holding the value
- * represented by the <code>String</code> argument.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- */
- public static Float valueOf(String s) throws NumberFormatException {
- return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
- }
-
- /**
- * Returns a <tt>Float</tt> instance representing the specified
- * <tt>float</tt> value.
- * If a new <tt>Float</tt> instance is not required, this method
- * should generally be used in preference to the constructor
- * {@link #Float(float)}, as this method is likely to yield
- * significantly better space and time performance by caching
- * frequently requested values.
- *
- * @param f a float value.
- * @return a <tt>Float</tt> instance representing <tt>f</tt>.
- * @since 1.5
- */
- public static Float valueOf(float f) {
- return new Float(f);
- }
-
- /**
- * Returns a new <code>float</code> initialized to the value
- * represented by the specified <code>String</code>, as performed
- * by the <code>valueOf</code> method of class <code>Float</code>.
- *
- * @param s the string to be parsed.
- * @return the <code>float</code> value represented by the string
- * argument.
- * @exception NumberFormatException if the string does not contain a
- * parsable <code>float</code>.
- * @see java.lang.Float#valueOf(String)
- * @since 1.2
- */
- public static float parseFloat(String s) throws NumberFormatException {
- return FloatingDecimal.readJavaFormatString(s).floatValue();
- }
-
- /**
- * Returns <code>true</code> if the specified number is a
- * Not-a-Number (NaN) value, <code>false</code> otherwise.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the argument is NaN;
- * <code>false</code> otherwise.
- */
- static public boolean isNaN(float v) {
- return (v != v);
- }
-
- /**
- * Returns <code>true</code> if the specified number is infinitely
- * large in magnitude, <code>false</code> otherwise.
- *
- * @param v the value to be tested.
- * @return <code>true</code> if the argument is positive infinity or
- * negative infinity; <code>false</code> otherwise.
- */
- static public boolean isInfinite(float v) {
- return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
- }
-
- /**
- * The value of the Float.
- *
- * @serial
- */
- private final float value;
-
- /**
- * Constructs a newly allocated <code>Float</code> object that
- * represents the primitive <code>float</code> argument.
- *
- * @param value the value to be represented by the <code>Float</code>.
- */
- public Float(float value) {
- this.value = value;
- }
-
- /**
- * Constructs a newly allocated <code>Float</code> object that
- * represents the argument converted to type <code>float</code>.
- *
- * @param value the value to be represented by the <code>Float</code>.
- */
- public Float(double value) {
- this.value = (float)value;
- }
-
- /**
- * Constructs a newly allocated <code>Float</code> object that
- * represents the floating-point value of type <code>float</code>
- * represented by the string. The string is converted to a
- * <code>float</code> value as if by the <code>valueOf</code> method.
- *
- * @param s a string to be converted to a <code>Float</code>.
- * @exception NumberFormatException if the string does not contain a
- * parsable number.
- * @see java.lang.Float#valueOf(java.lang.String)
- */
- public Float(String s) throws NumberFormatException {
- // REMIND: this is inefficient
- this(valueOf(s).floatValue());
- }
-
- /**
- * Returns <code>true</code> if this <code>Float</code> value is a
- * Not-a-Number (NaN), <code>false</code> otherwise.
- *
- * @return <code>true</code> if the value represented by this object is
- * NaN; <code>false</code> otherwise.
- */
- public boolean isNaN() {
- return isNaN(value);
- }
-
- /**
- * Returns <code>true</code> if this <code>Float</code> value is
- * infinitely large in magnitude, <code>false</code> otherwise.
- *
- * @return <code>true</code> if the value represented by this object is
- * positive infinity or negative infinity;
- * <code>false</code> otherwise.
- */
- public boolean isInfinite() {
- return isInfinite(value);
- }
-
- /**
- * Returns a string representation of this <code>Float</code> object.
- * The primitive <code>float</code> value represented by this object
- * is converted to a <code>String</code> exactly as if by the method
- * <code>toString</code> of one argument.
- *
- * @return a <code>String</code> representation of this object.
- * @see java.lang.Float#toString(float)
- */
- public String toString() {
- return String.valueOf(value);
- }
-
- /**
- * Returns the value of this <code>Float</code> as a
- * <code>byte</code> (by casting to a <code>byte</code>).
- *
- * @return the <code>float</code> value represented by this object
- * converted to type <code>byte</code>
- */
- public byte byteValue() {
- return (byte)value;
- }
-
- /**
- * Returns the value of this <code>Float</code> as a
- * <code>short</code> (by casting to a <code>short</code>).
- *
- * @return the <code>float</code> value represented by this object
- * converted to type <code>short</code>
- * @since JDK1.1
- */
- public short shortValue() {
- return (short)value;
- }
-
- /**
- * Returns the value of this <code>Float</code> as an
- * <code>int</code> (by casting to type <code>int</code>).
- *
- * @return the <code>float</code> value represented by this object
- * converted to type <code>int</code>
- */
- public int intValue() {
- return (int)value;
- }
-
- /**
- * Returns value of this <code>Float</code> as a <code>long</code>
- * (by casting to type <code>long</code>).
- *
- * @return the <code>float</code> value represented by this object
- * converted to type <code>long</code>
- */
- public long longValue() {
- return (long)value;
- }
-
- /**
- * Returns the <code>float</code> value of this <code>Float</code>
- * object.
- *
- * @return the <code>float</code> value represented by this object
- */
- public float floatValue() {
- return value;
- }
-
- /**
- * Returns the <code>double</code> value of this
- * <code>Float</code> object.
- *
- * @return the <code>float</code> value represented by this
- * object is converted to type <code>double</code> and the
- * result of the conversion is returned.
- */
- public double doubleValue() {
- return (double)value;
- }
-
- /**
- * Returns a hash code for this <code>Float</code> object. The
- * result is the integer bit representation, exactly as produced
- * by the method {@link #floatToIntBits(float)}, of the primitive
- * <code>float</code> value represented by this <code>Float</code>
- * object.
- *
- * @return a hash code value for this object.
- */
- public int hashCode() {
- return floatToIntBits(value);
- }
-
- /**
-
- * Compares this object against the specified object. The result
- * is <code>true</code> if and only if the argument is not
- * <code>null</code> and is a <code>Float</code> object that
- * represents a <code>float</code> with the same value as the
- * <code>float</code> represented by this object. For this
- * purpose, two <code>float</code> values are considered to be the
- * same if and only if the method {@link #floatToIntBits(float)}
- * returns the identical <code>int</code> value when applied to
- * each.
- * <p>
- * Note that in most cases, for two instances of class
- * <code>Float</code>, <code>f1</code> and <code>f2</code>, the value
- * of <code>f1.equals(f2)</code> is <code>true</code> if and only if
- * <blockquote><pre>
- * f1.floatValue() == f2.floatValue()
- * </pre></blockquote>
- * <p>
- * also has the value <code>true</code>. However, there are two exceptions:
- * <ul>
- * <li>If <code>f1</code> and <code>f2</code> both represent
- * <code>Float.NaN</code>, then the <code>equals</code> method returns
- * <code>true</code>, even though <code>Float.NaN==Float.NaN</code>
- * has the value <code>false</code>.
- * <li>If <code>f1</code> represents <code>+0.0f</code> while
- * <code>f2</code> represents <code>-0.0f</code>, or vice
- * versa, the <code>equal</code> test has the value
- * <code>false</code>, even though <code>0.0f==-0.0f</code>
- * has the value <code>true</code>.
- * </ul>
- * This definition allows hash tables to operate properly.
- *
- * @param obj the object to be compared
- * @return <code>true</code> if the objects are the same;
- * <code>false</code> otherwise.
- * @see java.lang.Float#floatToIntBits(float)
- */
- public boolean equals(Object obj) {
- return (obj instanceof Float)
- && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
- }
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "single format" bit
- * layout.
- * <p>
- * Bit 31 (the bit that is selected by the mask
- * <code>0x80000000</code>) represents the sign of the floating-point
- * number.
- * Bits 30-23 (the bits that are selected by the mask
- * <code>0x7f800000</code>) represent the exponent.
- * Bits 22-0 (the bits that are selected by the mask
- * <code>0x007fffff</code>) represent the significand (sometimes called
- * the mantissa) of the floating-point number.
- * <p>If the argument is positive infinity, the result is
- * <code>0x7f800000</code>.
- * <p>If the argument is negative infinity, the result is
- * <code>0xff800000</code>.
- * <p>If the argument is NaN, the result is <code>0x7fc00000</code>.
- * <p>
- * In all cases, the result is an integer that, when given to the
- * {@link #intBitsToFloat(int)} method, will produce a floating-point
- * value the same as the argument to <code>floatToIntBits</code>
- * (except all NaN values are collapsed to a single
- * "canonical" NaN value).
- *
- * @param value a floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native int floatToIntBits(float value);
-
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "single format" bit
- * layout, preserving Not-a-Number (NaN) values.
- * <p>
- * Bit 31 (the bit that is selected by the mask
- * <code>0x80000000</code>) represents the sign of the floating-point
- * number.
- * Bits 30-23 (the bits that are selected by the mask
- * <code>0x7f800000</code>) represent the exponent.
- * Bits 22-0 (the bits that are selected by the mask
- * <code>0x007fffff</code>) represent the significand (sometimes called
- * the mantissa) of the floating-point number.
- * <p>If the argument is positive infinity, the result is
- * <code>0x7f800000</code>.
- * <p>If the argument is negative infinity, the result is
- * <code>0xff800000</code>.
- * <p>
- * If the argument is NaN, the result is the integer representing
- * the actual NaN value. Unlike the <code>floatToIntBits</code>
- * method, <code>intToRawIntBits</code> does not collapse all the
- * bit patterns encoding a NaN to a single "canonical"
- * NaN value.
- * <p>
- * In all cases, the result is an integer that, when given to the
- * {@link #intBitsToFloat(int)} method, will produce a
- * floating-point value the same as the argument to
- * <code>floatToRawIntBits</code>.
- * @param value a floating-point number.
- * @return the bits that represent the floating-point number.
- */
- public static native int floatToRawIntBits(float value);
-
- /**
- * Returns the <code>float</code> value corresponding to a given
- * bit representation.
- * The argument is considered to be a representation of a
- * floating-point value according to the IEEE 754 floating-point
- * "single format" bit layout.
- * <p>
- * If the argument is <code>0x7f800000</code>, the result is positive
- * infinity.
- * <p>
- * If the argument is <code>0xff800000</code>, the result is negative
- * infinity.
- * <p>
- * If the argument is any value in the range
- * <code>0x7f800001</code> through <code>0x7fffffff</code> or in
- * the range <code>0xff800001</code> through
- * <code>0xffffffff</code>, the result is a NaN. No IEEE 754
- * floating-point operation provided by Java can distinguish
- * between two NaN values of the same type with different bit
- * patterns. Distinct values of NaN are only distinguishable by
- * use of the <code>Float.floatToRawIntBits</code> method.
- * <p>
- * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
- * values that can be computed from the argument:
- * <blockquote><pre>
- * int s = ((bits >> 31) == 0) ? 1 : -1;
- * int e = ((bits >> 23) & 0xff);
- * int m = (e == 0) ?
- * (bits & 0x7fffff) << 1 :
- * (bits & 0x7fffff) | 0x800000;
- * </pre></blockquote>
- * Then the floating-point result equals the value of the mathematical
- * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-150</sup>.
- *<p>
- * Note that this method may not be able to return a
- * <code>float</code> NaN with exactly same bit pattern as the
- * <code>int</code> argument. IEEE 754 distinguishes between two
- * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
- * differences between the two kinds of NaN are generally not
- * visible in Java. Arithmetic operations on signaling NaNs turn
- * them into quiet NaNs with a different, but often similar, bit
- * pattern. However, on some processors merely copying a
- * signaling NaN also performs that conversion. In particular,
- * copying a signaling NaN to return it to the calling method may
- * perform this conversion. So <code>intBitsToFloat</code> may
- * not be able to return a <code>float</code> with a signaling NaN
- * bit pattern. Consequently, for some <code>int</code> values,
- * <code>floatToRawIntBits(intBitsToFloat(start))</code> may
- * <i>not</i> equal <code>start</code>. Moreover, which
- * particular bit patterns represent signaling NaNs is platform
- * dependent; although all NaN bit patterns, quiet or signaling,
- * must be in the NaN range identified above.
- *
- * @param bits an integer.
- * @return the <code>float</code> floating-point value with the same bit
- * pattern.
- */
- public static native float intBitsToFloat(int bits);
-
- /**
- * Compares two <code>Float</code> objects numerically. There are
- * two ways in which comparisons performed by this method differ
- * from those performed by the Java language numerical comparison
- * operators (<code><, <=, ==, >= ></code>) when
- * applied to primitive <code>float</code> values:
- * <ul><li>
- * <code>Float.NaN</code> is considered by this method to
- * be equal to itself and greater than all other
- * <code>float</code> values
- * (including <code>Float.POSITIVE_INFINITY</code>).
- * <li>
- * <code>0.0f</code> is considered by this method to be greater
- * than <code>-0.0f</code>.
- * </ul>
- * This ensures that the <i>natural ordering</i> of <tt>Float</tt>
- * objects imposed by this method is <i>consistent with equals</i>.
- *
- * @param anotherFloat the <code>Float</code> to be compared.
- * @return the value <code>0</code> if <code>anotherFloat</code> is
- * numerically equal to this <code>Float</code> a value
- * less than <code>0</code> if this <code>Float</code>
- * is numerically less than <code>anotherFloat</code>
- * and a value greater than <code>0</code> if this
- * <code>Float</code> is numerically greater than
- * <code>anotherFloat</code>.
- *
- * @since 1.2
- * @see Comparable#compareTo(Object)
- */
- public int compareTo(Float anotherFloat) {
- return Float.compare(value, anotherFloat.value);
- }
-
- /**
- * Compares the two specified <code>float</code> values. The sign
- * of the integer value returned is the same as that of the
- * integer that would be returned by the call:
- * <pre>
- * new Float(f1).compareTo(new Float(f2))
- * </pre>
- *
- * @param f1 the first <code>float</code> to compare.
- * @param f2 the second <code>float</code> to compare.
- * @return the value <code>0</code> if <code>f1</code> is
- * numerically equal to <code>f2</code> a value less than
- * <code>0</code> if <code>f1</code> is numerically less than
- * <code>f2</code> and a value greater than <code>0</code>
- * if <code>f1</code> is numerically greater than
- * <code>f2</code>.
- * @since 1.4
- */
- public static int compare(float f1, float f2) {
- if (f1 < f2)
- return -1; // Neither val is NaN, thisVal is smaller
- if (f1 > f2)
- return 1; // Neither val is NaN, thisVal is larger
-
- int thisBits = Float.floatToIntBits(f1);
- int anotherBits = Float.floatToIntBits(f2);
-
- return (thisBits == anotherBits ? 0 : // Values are equal
- (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
- 1)); // (0.0, -0.0) or (NaN, !NaN)
- }
-
- /** use serialVersionUID from JDK 1.0.2 for interoperability */
- private static final long serialVersionUID = -2671257302660747028L;
- }