- /*
- * @(#)Collections.java 1.89 04/07/28
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.util;
- import java.io.Serializable;
- import java.io.ObjectOutputStream;
- import java.io.IOException;
- import java.lang.reflect.Array;
-
- /**
- * This class consists exclusively of static methods that operate on or return
- * collections. It contains polymorphic algorithms that operate on
- * collections, "wrappers", which return a new collection backed by a
- * specified collection, and a few other odds and ends.
- *
- * <p>The methods of this class all throw a <tt>NullPointerException</tt>
- * if the collections or class objects provided to them are null.
- *
- * <p>The documentation for the polymorphic algorithms contained in this class
- * generally includes a brief description of the <i>implementation</i>. Such
- * descriptions should be regarded as <i>implementation notes</i>, rather than
- * parts of the <i>specification</i>. Implementors should feel free to
- * substitute other algorithms, so long as the specification itself is adhered
- * to. (For example, the algorithm used by <tt>sort</tt> does not have to be
- * a mergesort, but it does have to be <i>stable</i>.)
- *
- * <p>The "destructive" algorithms contained in this class, that is, the
- * algorithms that modify the collection on which they operate, are specified
- * to throw <tt>UnsupportedOperationException</tt> if the collection does not
- * support the appropriate mutation primitive(s), such as the <tt>set</tt>
- * method. These algorithms may, but are not required to, throw this
- * exception if an invocation would have no effect on the collection. For
- * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
- * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
- *
- * <p>This class is a member of the
- * <a href="{@docRoot}/../guide/collections/index.html">
- * Java Collections Framework</a>.
- *
- * @author Josh Bloch
- * @author Neal Gafter
- * @version 1.89, 07/28/04
- * @see Collection
- * @see Set
- * @see List
- * @see Map
- * @since 1.2
- */
-
- public class Collections {
- // Suppresses default constructor, ensuring non-instantiability.
- private Collections() {
- }
-
- // Algorithms
-
- /*
- * Tuning parameters for algorithms - Many of the List algorithms have
- * two implementations, one of which is appropriate for RandomAccess
- * lists, the other for "sequential." Often, the random access variant
- * yields better performance on small sequential access lists. The
- * tuning parameters below determine the cutoff point for what constitutes
- * a "small" sequential access list for each algorithm. The values below
- * were empirically determined to work well for LinkedList. Hopefully
- * they should be reasonable for other sequential access List
- * implementations. Those doing performance work on this code would
- * do well to validate the values of these parameters from time to time.
- * (The first word of each tuning parameter name is the algorithm to which
- * it applies.)
- */
- private static final int BINARYSEARCH_THRESHOLD = 5000;
- private static final int REVERSE_THRESHOLD = 18;
- private static final int SHUFFLE_THRESHOLD = 5;
- private static final int FILL_THRESHOLD = 25;
- private static final int ROTATE_THRESHOLD = 100;
- private static final int COPY_THRESHOLD = 10;
- private static final int REPLACEALL_THRESHOLD = 11;
- private static final int INDEXOFSUBLIST_THRESHOLD = 35;
-
- /**
- * Sorts the specified list into ascending order, according to the
- * <i>natural ordering</i> of its elements. All elements in the list must
- * implement the <tt>Comparable</tt> interface. Furthermore, all elements
- * in the list must be <i>mutually comparable</i> (that is,
- * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
- * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
- *
- * This sort is guaranteed to be <i>stable</i>: equal elements will
- * not be reordered as a result of the sort.<p>
- *
- * The specified list must be modifiable, but need not be resizable.<p>
- *
- * The sorting algorithm is a modified mergesort (in which the merge is
- * omitted if the highest element in the low sublist is less than the
- * lowest element in the high sublist). This algorithm offers guaranteed
- * n log(n) performance.
- *
- * This implementation dumps the specified list into an array, sorts
- * the array, and iterates over the list resetting each element
- * from the corresponding position in the array. This avoids the
- * n<sup>2</sup> log(n) performance that would result from attempting
- * to sort a linked list in place.
- *
- * @param list the list to be sorted.
- * @throws ClassCastException if the list contains elements that are not
- * <i>mutually comparable</i> (for example, strings and integers).
- * @throws UnsupportedOperationException if the specified list's
- * list-iterator does not support the <tt>set</tt> operation.
- * @see Comparable
- */
- public static <T extends Comparable<? super T>> void sort(List<T> list) {
- Object[] a = list.toArray();
- Arrays.sort(a);
- ListIterator<T> i = list.listIterator();
- for (int j=0; j<a.length; j++) {
- i.next();
- i.set((T)a[j]);
- }
- }
-
- /**
- * Sorts the specified list according to the order induced by the
- * specified comparator. All elements in the list must be <i>mutually
- * comparable</i> using the specified comparator (that is,
- * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
- * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
- *
- * This sort is guaranteed to be <i>stable</i>: equal elements will
- * not be reordered as a result of the sort.<p>
- *
- * The sorting algorithm is a modified mergesort (in which the merge is
- * omitted if the highest element in the low sublist is less than the
- * lowest element in the high sublist). This algorithm offers guaranteed
- * n log(n) performance.
- *
- * The specified list must be modifiable, but need not be resizable.
- * This implementation dumps the specified list into an array, sorts
- * the array, and iterates over the list resetting each element
- * from the corresponding position in the array. This avoids the
- * n<sup>2</sup> log(n) performance that would result from attempting
- * to sort a linked list in place.
- *
- * @param list the list to be sorted.
- * @param c the comparator to determine the order of the list. A
- * <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @throws ClassCastException if the list contains elements that are not
- * <i>mutually comparable</i> using the specified comparator.
- * @throws UnsupportedOperationException if the specified list's
- * list-iterator does not support the <tt>set</tt> operation.
- * @see Comparator
- */
- public static <T> void sort(List<T> list, Comparator<? super T> c) {
- Object[] a = list.toArray();
- Arrays.sort(a, (Comparator)c);
- ListIterator i = list.listIterator();
- for (int j=0; j<a.length; j++) {
- i.next();
- i.set(a[j]);
- }
- }
-
-
- /**
- * Searches the specified list for the specified object using the binary
- * search algorithm. The list must be sorted into ascending order
- * according to the <i>natural ordering</i> of its elements (as by the
- * <tt>sort(List)</tt> method, above) prior to making this call. If it is
- * not sorted, the results are undefined. If the list contains multiple
- * elements equal to the specified object, there is no guarantee which one
- * will be found.<p>
- *
- * This method runs in log(n) time for a "random access" list (which
- * provides near-constant-time positional access). If the specified list
- * does not implement the {@link RandomAccess} interface and is large,
- * this method will do an iterator-based binary search that performs
- * O(n) link traversals and O(log n) element comparisons.
- *
- * @param list the list to be searched.
- * @param key the key to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @throws ClassCastException if the list contains elements that are not
- * <i>mutually comparable</i> (for example, strings and
- * integers), or the search key in not mutually comparable
- * with the elements of the list.
- * @see Comparable
- * @see #sort(List)
- */
- public static <T>
- int binarySearch(List<? extends Comparable<? super T>> list, T key) {
- if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
- return Collections.indexedBinarySearch(list, key);
- else
- return Collections.iteratorBinarySearch(list, key);
- }
-
- private static <T>
- int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
- {
- int low = 0;
- int high = list.size()-1;
-
- while (low <= high) {
- int mid = (low + high) >> 1;
- Comparable<? super T> midVal = list.get(mid);
- int cmp = midVal.compareTo(key);
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found
- }
-
- private static <T>
- int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
- {
- int low = 0;
- int high = list.size()-1;
- ListIterator<? extends Comparable<? super T>> i = list.listIterator();
-
- while (low <= high) {
- int mid = (low + high) >> 1;
- Comparable<? super T> midVal = get(i, mid);
- int cmp = midVal.compareTo(key);
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found
- }
-
- /**
- * Gets the ith element from the given list by repositioning the specified
- * list listIterator.
- */
- private static <T> T get(ListIterator<? extends T> i, int index) {
- T obj = null;
- int pos = i.nextIndex();
- if (pos <= index) {
- do {
- obj = i.next();
- } while (pos++ < index);
- } else {
- do {
- obj = i.previous();
- } while (--pos > index);
- }
- return obj;
- }
-
- /**
- * Searches the specified list for the specified object using the binary
- * search algorithm. The list must be sorted into ascending order
- * according to the specified comparator (as by the <tt>Sort(List,
- * Comparator)</tt> method, above), prior to making this call. If it is
- * not sorted, the results are undefined. If the list contains multiple
- * elements equal to the specified object, there is no guarantee which one
- * will be found.<p>
- *
- * This method runs in log(n) time for a "random access" list (which
- * provides near-constant-time positional access). If the specified list
- * does not implement the {@link RandomAccess} interface and is large,
- * this method will do an iterator-based binary search that performs
- * O(n) link traversals and O(log n) element comparisons.
- *
- * @param list the list to be searched.
- * @param key the key to be searched for.
- * @param c the comparator by which the list is ordered. A
- * <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @throws ClassCastException if the list contains elements that are not
- * <i>mutually comparable</i> using the specified comparator,
- * or the search key in not mutually comparable with the
- * elements of the list using this comparator.
- * @see Comparable
- * @see #sort(List, Comparator)
- */
- public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
- if (c==null)
- return binarySearch((List) list, key);
-
- if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
- return Collections.indexedBinarySearch(list, key, c);
- else
- return Collections.iteratorBinarySearch(list, key, c);
- }
-
- private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
- int low = 0;
- int high = l.size()-1;
-
- while (low <= high) {
- int mid = (low + high) >> 1;
- T midVal = l.get(mid);
- int cmp = c.compare(midVal, key);
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found
- }
-
- private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
- int low = 0;
- int high = l.size()-1;
- ListIterator<? extends T> i = l.listIterator();
-
- while (low <= high) {
- int mid = (low + high) >> 1;
- T midVal = get(i, mid);
- int cmp = c.compare(midVal, key);
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found
- }
-
- private interface SelfComparable extends Comparable<SelfComparable> {}
-
-
- /**
- * Reverses the order of the elements in the specified list.<p>
- *
- * This method runs in linear time.
- *
- * @param list the list whose elements are to be reversed.
- * @throws UnsupportedOperationException if the specified list or
- * its list-iterator does not support the <tt>set</tt> method.
- */
- public static void reverse(List<?> list) {
- int size = list.size();
- if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
- for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
- swap(list, i, j);
- } else {
- ListIterator fwd = list.listIterator();
- ListIterator rev = list.listIterator(size);
- for (int i=0, mid=list.size()>>1; i<mid; i++) {
- Object tmp = fwd.next();
- fwd.set(rev.previous());
- rev.set(tmp);
- }
- }
- }
-
- /**
- * Randomly permutes the specified list using a default source of
- * randomness. All permutations occur with approximately equal
- * likelihood.<p>
- *
- * The hedge "approximately" is used in the foregoing description because
- * default source of randomness is only approximately an unbiased source
- * of independently chosen bits. If it were a perfect source of randomly
- * chosen bits, then the algorithm would choose permutations with perfect
- * uniformity.<p>
- *
- * This implementation traverses the list backwards, from the last element
- * up to the second, repeatedly swapping a randomly selected element into
- * the "current position". Elements are randomly selected from the
- * portion of the list that runs from the first element to the current
- * position, inclusive.<p>
- *
- * This method runs in linear time. If the specified list does not
- * implement the {@link RandomAccess} interface and is large, this
- * implementation dumps the specified list into an array before shuffling
- * it, and dumps the shuffled array back into the list. This avoids the
- * quadratic behavior that would result from shuffling a "sequential
- * access" list in place.
- *
- * @param list the list to be shuffled.
- * @throws UnsupportedOperationException if the specified list or
- * its list-iterator does not support the <tt>set</tt> method.
- */
- public static void shuffle(List<?> list) {
- shuffle(list, r);
- }
- private static Random r = new Random();
-
- /**
- * Randomly permute the specified list using the specified source of
- * randomness. All permutations occur with equal likelihood
- * assuming that the source of randomness is fair.<p>
- *
- * This implementation traverses the list backwards, from the last element
- * up to the second, repeatedly swapping a randomly selected element into
- * the "current position". Elements are randomly selected from the
- * portion of the list that runs from the first element to the current
- * position, inclusive.<p>
- *
- * This method runs in linear time. If the specified list does not
- * implement the {@link RandomAccess} interface and is large, this
- * implementation dumps the specified list into an array before shuffling
- * it, and dumps the shuffled array back into the list. This avoids the
- * quadratic behavior that would result from shuffling a "sequential
- * access" list in place.
- *
- * @param list the list to be shuffled.
- * @param rnd the source of randomness to use to shuffle the list.
- * @throws UnsupportedOperationException if the specified list or its
- * list-iterator does not support the <tt>set</tt> operation.
- */
- public static void shuffle(List<?> list, Random rnd) {
- int size = list.size();
- if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
- for (int i=size; i>1; i--)
- swap(list, i-1, rnd.nextInt(i));
- } else {
- Object arr[] = list.toArray();
-
- // Shuffle array
- for (int i=size; i>1; i--)
- swap(arr, i-1, rnd.nextInt(i));
-
- // Dump array back into list
- ListIterator it = list.listIterator();
- for (int i=0; i<arr.length; i++) {
- it.next();
- it.set(arr[i]);
- }
- }
- }
-
- /**
- * Swaps the elements at the specified positions in the specified list.
- * (If the specified positions are equal, invoking this method leaves
- * the list unchanged.)
- *
- * @param list The list in which to swap elements.
- * @param i the index of one element to be swapped.
- * @param j the index of the other element to be swapped.
- * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
- * is out of range (i < 0 || i >= list.size()
- * || j < 0 || j >= list.size()).
- * @since 1.4
- */
- public static void swap(List<?> list, int i, int j) {
- final List l = list;
- l.set(i, l.set(j, l.get(i)));
- }
-
- /**
- * Swaps the two specified elements in the specified array.
- */
- private static void swap(Object[] arr, int i, int j) {
- Object tmp = arr[i];
- arr[i] = arr[j];
- arr[j] = tmp;
- }
-
- /**
- * Replaces all of the elements of the specified list with the specified
- * element. <p>
- *
- * This method runs in linear time.
- *
- * @param list the list to be filled with the specified element.
- * @param obj The element with which to fill the specified list.
- * @throws UnsupportedOperationException if the specified list or its
- * list-iterator does not support the <tt>set</tt> operation.
- */
- public static <T> void fill(List<? super T> list, T obj) {
- int size = list.size();
-
- if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
- for (int i=0; i<size; i++)
- list.set(i, obj);
- } else {
- ListIterator<? super T> itr = list.listIterator();
- for (int i=0; i<size; i++) {
- itr.next();
- itr.set(obj);
- }
- }
- }
-
- /**
- * Copies all of the elements from one list into another. After the
- * operation, the index of each copied element in the destination list
- * will be identical to its index in the source list. The destination
- * list must be at least as long as the source list. If it is longer, the
- * remaining elements in the destination list are unaffected. <p>
- *
- * This method runs in linear time.
- *
- * @param dest The destination list.
- * @param src The source list.
- * @throws IndexOutOfBoundsException if the destination list is too small
- * to contain the entire source List.
- * @throws UnsupportedOperationException if the destination list's
- * list-iterator does not support the <tt>set</tt> operation.
- */
- public static <T> void copy(List<? super T> dest, List<? extends T> src) {
- int srcSize = src.size();
- if (srcSize > dest.size())
- throw new IndexOutOfBoundsException("Source does not fit in dest");
-
- if (srcSize < COPY_THRESHOLD ||
- (src instanceof RandomAccess && dest instanceof RandomAccess)) {
- for (int i=0; i<srcSize; i++)
- dest.set(i, src.get(i));
- } else {
- ListIterator<? super T> di=dest.listIterator();
- ListIterator<? extends T> si=src.listIterator();
- for (int i=0; i<srcSize; i++) {
- di.next();
- di.set(si.next());
- }
- }
- }
-
- /**
- * Returns the minimum element of the given collection, according to the
- * <i>natural ordering</i> of its elements. All elements in the
- * collection must implement the <tt>Comparable</tt> interface.
- * Furthermore, all elements in the collection must be <i>mutually
- * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
- * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
- * <tt>e2</tt> in the collection).<p>
- *
- * This method iterates over the entire collection, hence it requires
- * time proportional to the size of the collection.
- *
- * @param coll the collection whose minimum element is to be determined.
- * @return the minimum element of the given collection, according
- * to the <i>natural ordering</i> of its elements.
- * @throws ClassCastException if the collection contains elements that are
- * not <i>mutually comparable</i> (for example, strings and
- * integers).
- * @throws NoSuchElementException if the collection is empty.
- * @see Comparable
- */
- public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
- Iterator<? extends T> i = coll.iterator();
- T candidate = i.next();
-
- while(i.hasNext()) {
- T next = i.next();
- if (next.compareTo(candidate) < 0)
- candidate = next;
- }
- return candidate;
- }
-
- /**
- * Returns the minimum element of the given collection, according to the
- * order induced by the specified comparator. All elements in the
- * collection must be <i>mutually comparable</i> by the specified
- * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
- * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
- * <tt>e2</tt> in the collection).<p>
- *
- * This method iterates over the entire collection, hence it requires
- * time proportional to the size of the collection.
- *
- * @param coll the collection whose minimum element is to be determined.
- * @param comp the comparator with which to determine the minimum element.
- * A <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @return the minimum element of the given collection, according
- * to the specified comparator.
- * @throws ClassCastException if the collection contains elements that are
- * not <i>mutually comparable</i> using the specified comparator.
- * @throws NoSuchElementException if the collection is empty.
- * @see Comparable
- */
- public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
- if (comp==null)
- return (T)min((Collection<SelfComparable>) (Collection) coll);
-
- Iterator<? extends T> i = coll.iterator();
- T candidate = i.next();
-
- while(i.hasNext()) {
- T next = i.next();
- if (comp.compare(next, candidate) < 0)
- candidate = next;
- }
- return candidate;
- }
-
- /**
- * Returns the maximum element of the given collection, according to the
- * <i>natural ordering</i> of its elements. All elements in the
- * collection must implement the <tt>Comparable</tt> interface.
- * Furthermore, all elements in the collection must be <i>mutually
- * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
- * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
- * <tt>e2</tt> in the collection).<p>
- *
- * This method iterates over the entire collection, hence it requires
- * time proportional to the size of the collection.
- *
- * @param coll the collection whose maximum element is to be determined.
- * @return the maximum element of the given collection, according
- * to the <i>natural ordering</i> of its elements.
- * @throws ClassCastException if the collection contains elements that are
- * not <i>mutually comparable</i> (for example, strings and
- * integers).
- * @throws NoSuchElementException if the collection is empty.
- * @see Comparable
- */
- public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
- Iterator<? extends T> i = coll.iterator();
- T candidate = i.next();
-
- while(i.hasNext()) {
- T next = i.next();
- if (next.compareTo(candidate) > 0)
- candidate = next;
- }
- return candidate;
- }
-
- /**
- * Returns the maximum element of the given collection, according to the
- * order induced by the specified comparator. All elements in the
- * collection must be <i>mutually comparable</i> by the specified
- * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
- * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
- * <tt>e2</tt> in the collection).<p>
- *
- * This method iterates over the entire collection, hence it requires
- * time proportional to the size of the collection.
- *
- * @param coll the collection whose maximum element is to be determined.
- * @param comp the comparator with which to determine the maximum element.
- * A <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @return the maximum element of the given collection, according
- * to the specified comparator.
- * @throws ClassCastException if the collection contains elements that are
- * not <i>mutually comparable</i> using the specified comparator.
- * @throws NoSuchElementException if the collection is empty.
- * @see Comparable
- */
- public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
- if (comp==null)
- return (T)max((Collection<SelfComparable>) (Collection) coll);
-
- Iterator<? extends T> i = coll.iterator();
- T candidate = i.next();
-
- while(i.hasNext()) {
- T next = i.next();
- if (comp.compare(next, candidate) > 0)
- candidate = next;
- }
- return candidate;
- }
-
- /**
- * Rotates the elements in the specified list by the specified distance.
- * After calling this method, the element at index <tt>i</tt> will be
- * the element previously at index <tt>(i - distance)</tt> mod
- * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
- * and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
- * the size of the list.)
- *
- * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
- * After invoking <tt>Collections.rotate(list, 1)</tt> (or
- * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
- * <tt>[s, t, a, n, k]</tt>.
- *
- * <p>Note that this method can usefully be applied to sublists to
- * move one or more elements within a list while preserving the
- * order of the remaining elements. For example, the following idiom
- * moves the element at index <tt>j</tt> forward to position
- * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
- * <pre>
- * Collections.rotate(list.subList(j, k+1), -1);
- * </pre>
- * To make this concrete, suppose <tt>list</tt> comprises
- * <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt>
- * (<tt>b</tt>) forward two positions, perform the following invocation:
- * <pre>
- * Collections.rotate(l.subList(1, 4), -1);
- * </pre>
- * The resulting list is <tt>[a, c, d, b, e]</tt>.
- *
- * <p>To move more than one element forward, increase the absolute value
- * of the rotation distance. To move elements backward, use a positive
- * shift distance.
- *
- * <p>If the specified list is small or implements the {@link
- * RandomAccess} interface, this implementation exchanges the first
- * element into the location it should go, and then repeatedly exchanges
- * the displaced element into the location it should go until a displaced
- * element is swapped into the first element. If necessary, the process
- * is repeated on the second and successive elements, until the rotation
- * is complete. If the specified list is large and doesn't implement the
- * <tt>RandomAccess</tt> interface, this implementation breaks the
- * list into two sublist views around index <tt>-distance mod size</tt>.
- * Then the {@link #reverse(List)} method is invoked on each sublist view,
- * and finally it is invoked on the entire list. For a more complete
- * description of both algorithms, see Section 2.3 of Jon Bentley's
- * <i>Programming Pearls</i> (Addison-Wesley, 1986).
- *
- * @param list the list to be rotated.
- * @param distance the distance to rotate the list. There are no
- * constraints on this value; it may be zero, negative, or
- * greater than <tt>list.size()</tt>.
- * @throws UnsupportedOperationException if the specified list or
- * its list-iterator does not support the <tt>set</tt> method.
- * @since 1.4
- */
- public static void rotate(List<?> list, int distance) {
- if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
- rotate1((List)list, distance);
- else
- rotate2((List)list, distance);
- }
-
- private static <T> void rotate1(List<T> list, int distance) {
- int size = list.size();
- if (size == 0)
- return;
- distance = distance % size;
- if (distance < 0)
- distance += size;
- if (distance == 0)
- return;
-
- for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
- T displaced = list.get(cycleStart);
- int i = cycleStart;
- do {
- i += distance;
- if (i >= size)
- i -= size;
- displaced = list.set(i, displaced);
- nMoved ++;
- } while(i != cycleStart);
- }
- }
-
- private static void rotate2(List<?> list, int distance) {
- int size = list.size();
- if (size == 0)
- return;
- int mid = -distance % size;
- if (mid < 0)
- mid += size;
- if (mid == 0)
- return;
-
- reverse(list.subList(0, mid));
- reverse(list.subList(mid, size));
- reverse(list);
- }
-
- /**
- * Replaces all occurrences of one specified value in a list with another.
- * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
- * in <tt>list</tt> such that
- * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
- * (This method has no effect on the size of the list.)
- *
- * @param list the list in which replacement is to occur.
- * @param oldVal the old value to be replaced.
- * @param newVal the new value with which <tt>oldVal</tt> is to be
- * replaced.
- * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
- * <tt>e</tt> such that
- * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
- * @throws UnsupportedOperationException if the specified list or
- * its list-iterator does not support the <tt>set</tt> method.
- * @since 1.4
- */
- public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
- boolean result = false;
- int size = list.size();
- if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
- if (oldVal==null) {
- for (int i=0; i<size; i++) {
- if (list.get(i)==null) {
- list.set(i, newVal);
- result = true;
- }
- }
- } else {
- for (int i=0; i<size; i++) {
- if (oldVal.equals(list.get(i))) {
- list.set(i, newVal);
- result = true;
- }
- }
- }
- } else {
- ListIterator<T> itr=list.listIterator();
- if (oldVal==null) {
- for (int i=0; i<size; i++) {
- if (itr.next()==null) {
- itr.set(newVal);
- result = true;
- }
- }
- } else {
- for (int i=0; i<size; i++) {
- if (oldVal.equals(itr.next())) {
- itr.set(newVal);
- result = true;
- }
- }
- }
- }
- return result;
- }
-
- /**
- * Returns the starting position of the first occurrence of the specified
- * target list within the specified source list, or -1 if there is no
- * such occurrence. More formally, returns the lowest index <tt>i</tt>
- * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
- * or -1 if there is no such index. (Returns -1 if
- * <tt>target.size() > source.size()</tt>.)
- *
- * <p>This implementation uses the "brute force" technique of scanning
- * over the source list, looking for a match with the target at each
- * location in turn.
- *
- * @param source the list in which to search for the first occurrence
- * of <tt>target</tt>.
- * @param target the list to search for as a subList of <tt>source</tt>.
- * @return the starting position of the first occurrence of the specified
- * target list within the specified source list, or -1 if there
- * is no such occurrence.
- * @since 1.4
- */
- public static int indexOfSubList(List<?> source, List<?> target) {
- int sourceSize = source.size();
- int targetSize = target.size();
- int maxCandidate = sourceSize - targetSize;
-
- if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
- (source instanceof RandomAccess&&target instanceof RandomAccess)) {
- nextCand:
- for (int candidate = 0; candidate <= maxCandidate; candidate++) {
- for (int i=0, j=candidate; i<targetSize; i++, j++)
- if (!eq(target.get(i), source.get(j)))
- continue nextCand; // Element mismatch, try next cand
- return candidate; // All elements of candidate matched target
- }
- } else { // Iterator version of above algorithm
- ListIterator<?> si = source.listIterator();
- nextCand:
- for (int candidate = 0; candidate <= maxCandidate; candidate++) {
- ListIterator<?> ti = target.listIterator();
- for (int i=0; i<targetSize; i++) {
- if (!eq(ti.next(), si.next())) {
- // Back up source iterator to next candidate
- for (int j=0; j<i; j++)
- si.previous();
- continue nextCand;
- }
- }
- return candidate;
- }
- }
- return -1; // No candidate matched the target
- }
-
- /**
- * Returns the starting position of the last occurrence of the specified
- * target list within the specified source list, or -1 if there is no such
- * occurrence. More formally, returns the highest index <tt>i</tt>
- * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
- * or -1 if there is no such index. (Returns -1 if
- * <tt>target.size() > source.size()</tt>.)
- *
- * <p>This implementation uses the "brute force" technique of iterating
- * over the source list, looking for a match with the target at each
- * location in turn.
- *
- * @param source the list in which to search for the last occurrence
- * of <tt>target</tt>.
- * @param target the list to search for as a subList of <tt>source</tt>.
- * @return the starting position of the last occurrence of the specified
- * target list within the specified source list, or -1 if there
- * is no such occurrence.
- * @since 1.4
- */
- public static int lastIndexOfSubList(List<?> source, List<?> target) {
- int sourceSize = source.size();
- int targetSize = target.size();
- int maxCandidate = sourceSize - targetSize;
-
- if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
- source instanceof RandomAccess) { // Index access version
- nextCand:
- for (int candidate = maxCandidate; candidate >= 0; candidate--) {
- for (int i=0, j=candidate; i<targetSize; i++, j++)
- if (!eq(target.get(i), source.get(j)))
- continue nextCand; // Element mismatch, try next cand
- return candidate; // All elements of candidate matched target
- }
- } else { // Iterator version of above algorithm
- if (maxCandidate < 0)
- return -1;
- ListIterator<?> si = source.listIterator(maxCandidate);
- nextCand:
- for (int candidate = maxCandidate; candidate >= 0; candidate--) {
- ListIterator<?> ti = target.listIterator();
- for (int i=0; i<targetSize; i++) {
- if (!eq(ti.next(), si.next())) {
- if (candidate != 0) {
- // Back up source iterator to next candidate
- for (int j=0; j<=i+1; j++)
- si.previous();
- }
- continue nextCand;
- }
- }
- return candidate;
- }
- }
- return -1; // No candidate matched the target
- }
-
-
- // Unmodifiable Wrappers
-
- /**
- * Returns an unmodifiable view of the specified collection. This method
- * allows modules to provide users with "read-only" access to internal
- * collections. Query operations on the returned collection "read through"
- * to the specified collection, and attempts to modify the returned
- * collection, whether direct or via its iterator, result in an
- * <tt>UnsupportedOperationException</tt>.<p>
- *
- * The returned collection does <i>not</i> pass the hashCode and equals
- * operations through to the backing collection, but relies on
- * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
- * is necessary to preserve the contracts of these operations in the case
- * that the backing collection is a set or a list.<p>
- *
- * The returned collection will be serializable if the specified collection
- * is serializable.
- *
- * @param c the collection for which an unmodifiable view is to be
- * returned.
- * @return an unmodifiable view of the specified collection.
- */
- public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
- return new UnmodifiableCollection<T>(c);
- }
-
- /**
- * @serial include
- */
- static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 1820017752578914078L;
-
- Collection<? extends E> c;
-
- UnmodifiableCollection(Collection<? extends E> c) {
- if (c==null)
- throw new NullPointerException();
- this.c = c;
- }
-
- public int size() {return c.size();}
- public boolean isEmpty() {return c.isEmpty();}
- public boolean contains(Object o) {return c.contains(o);}
- public Object[] toArray() {return c.toArray();}
- public <T> T[] toArray(T[] a) {return c.toArray(a);}
- public String toString() {return c.toString();}
-
- public Iterator<E> iterator() {
- return new Iterator<E>() {
- Iterator<? extends E> i = c.iterator();
-
- public boolean hasNext() {return i.hasNext();}
- public E next() {return i.next();}
- public void remove() {
- throw new UnsupportedOperationException();
- }
- };
- }
-
- public boolean add(E o){
- throw new UnsupportedOperationException();
- }
- public boolean remove(Object o) {
- throw new UnsupportedOperationException();
- }
-
- public boolean containsAll(Collection<?> coll) {
- return c.containsAll(coll);
- }
- public boolean addAll(Collection<? extends E> coll) {
- throw new UnsupportedOperationException();
- }
- public boolean removeAll(Collection<?> coll) {
- throw new UnsupportedOperationException();
- }
- public boolean retainAll(Collection<?> coll) {
- throw new UnsupportedOperationException();
- }
- public void clear() {
- throw new UnsupportedOperationException();
- }
- }
-
- /**
- * Returns an unmodifiable view of the specified set. This method allows
- * modules to provide users with "read-only" access to internal sets.
- * Query operations on the returned set "read through" to the specified
- * set, and attempts to modify the returned set, whether direct or via its
- * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
- *
- * The returned set will be serializable if the specified set
- * is serializable.
- *
- * @param s the set for which an unmodifiable view is to be returned.
- * @return an unmodifiable view of the specified set.
- */
-
- public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
- return new UnmodifiableSet<T>(s);
- }
-
- /**
- * @serial include
- */
- static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
- implements Set<E>, Serializable {
- private static final long serialVersionUID = -9215047833775013803L;
-
- UnmodifiableSet(Set<? extends E> s) {super(s);}
- public boolean equals(Object o) {return c.equals(o);}
- public int hashCode() {return c.hashCode();}
- }
-
- /**
- * Returns an unmodifiable view of the specified sorted set. This method
- * allows modules to provide users with "read-only" access to internal
- * sorted sets. Query operations on the returned sorted set "read
- * through" to the specified sorted set. Attempts to modify the returned
- * sorted set, whether direct, via its iterator, or via its
- * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
- * an <tt>UnsupportedOperationException</tt>.<p>
- *
- * The returned sorted set will be serializable if the specified sorted set
- * is serializable.
- *
- * @param s the sorted set for which an unmodifiable view is to be
- * returned.
- * @return an unmodifiable view of the specified sorted set.
- */
- public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
- return new UnmodifiableSortedSet<T>(s);
- }
-
- /**
- * @serial include
- */
- static class UnmodifiableSortedSet<E>
- extends UnmodifiableSet<E>
- implements SortedSet<E>, Serializable {
- private static final long serialVersionUID = -4929149591599911165L;
- private SortedSet<E> ss;
-
- UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
-
- public Comparator<? super E> comparator() {return ss.comparator();}
-
- public SortedSet<E> subSet(E fromElement, E toElement) {
- return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
- }
- public SortedSet<E> headSet(E toElement) {
- return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
- }
- public SortedSet<E> tailSet(E fromElement) {
- return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
- }
-
- public E first() {return ss.first();}
- public E last() {return ss.last();}
- }
-
- /**
- * Returns an unmodifiable view of the specified list. This method allows
- * modules to provide users with "read-only" access to internal
- * lists. Query operations on the returned list "read through" to the
- * specified list, and attempts to modify the returned list, whether
- * direct or via its iterator, result in an
- * <tt>UnsupportedOperationException</tt>.<p>
- *
- * The returned list will be serializable if the specified list
- * is serializable. Similarly, the returned list will implement
- * {@link RandomAccess} if the specified list does.
- *
- * @param list the list for which an unmodifiable view is to be returned.
- * @return an unmodifiable view of the specified list.
- */
- public static <T> List<T> unmodifiableList(List<? extends T> list) {
- return (list instanceof RandomAccess ?
- new UnmodifiableRandomAccessList<T>(list) :
- new UnmodifiableList<T>(list));
- }
-
- /**
- * @serial include
- */
- static class UnmodifiableList<E> extends UnmodifiableCollection<E>
- implements List<E> {
- static final long serialVersionUID = -283967356065247728L;
- List<? extends E> list;
-
- UnmodifiableList(List<? extends E> list) {
- super(list);
- this.list = list;
- }
-
- public boolean equals(Object o) {return list.equals(o);}
- public int hashCode() {return list.hashCode();}
-
- public E get(int index) {return list.get(index);}
- public E set(int index, E element) {
- throw new UnsupportedOperationException();
- }
- public void add(int index, E element) {
- throw new UnsupportedOperationException();
- }
- public E remove(int index) {
- throw new UnsupportedOperationException();
- }
- public int indexOf(Object o) {return list.indexOf(o);}
- public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
- public boolean addAll(int index, Collection<? extends E> c) {
- throw new UnsupportedOperationException();
- }
- public ListIterator<E> listIterator() {return listIterator(0);}
-
- public ListIterator<E> listIterator(final int index) {
- return new ListIterator<E>() {
- ListIterator<? extends E> i = list.listIterator(index);
-
- public boolean hasNext() {return i.hasNext();}
- public E next() {return i.next();}
- public boolean hasPrevious() {return i.hasPrevious();}
- public E previous() {return i.previous();}
- public int nextIndex() {return i.nextIndex();}
- public int previousIndex() {return i.previousIndex();}
-
- public void remove() {
- throw new UnsupportedOperationException();
- }
- public void set(E o) {
- throw new UnsupportedOperationException();
- }
- public void add(E o) {
- throw new UnsupportedOperationException();
- }
- };
- }
-
- public List<E> subList(int fromIndex, int toIndex) {
- return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
- }
-
- /**
- * UnmodifiableRandomAccessList instances are serialized as
- * UnmodifiableList instances to allow them to be deserialized
- * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
- * This method inverts the transformation. As a beneficial
- * side-effect, it also grafts the RandomAccess marker onto
- * UnmodifiableList instances that were serialized in pre-1.4 JREs.
- *
- * Note: Unfortunately, UnmodifiableRandomAccessList instances
- * serialized in 1.4.1 and deserialized in 1.4 will become
- * UnmodifiableList instances, as this method was missing in 1.4.
- */
- private Object readResolve() {
- return (list instanceof RandomAccess
- ? new UnmodifiableRandomAccessList<E>(list)
- : this);
- }
- }
-
- /**
- * @serial include
- */
- static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
- implements RandomAccess
- {
- UnmodifiableRandomAccessList(List<? extends E> list) {
- super(list);
- }
-
- public List<E> subList(int fromIndex, int toIndex) {
- return new UnmodifiableRandomAccessList<E>(
- list.subList(fromIndex, toIndex));
- }
-
- private static final long serialVersionUID = -2542308836966382001L;
-
- /**
- * Allows instances to be deserialized in pre-1.4 JREs (which do
- * not have UnmodifiableRandomAccessList). UnmodifiableList has
- * a readResolve method that inverts this transformation upon
- * deserialization.
- */
- private Object writeReplace() {
- return new UnmodifiableList<E>(list);
- }
- }
-
- /**
- * Returns an unmodifiable view of the specified map. This method
- * allows modules to provide users with "read-only" access to internal
- * maps. Query operations on the returned map "read through"
- * to the specified map, and attempts to modify the returned
- * map, whether direct or via its collection views, result in an
- * <tt>UnsupportedOperationException</tt>.<p>
- *
- * The returned map will be serializable if the specified map
- * is serializable.
- *
- * @param m the map for which an unmodifiable view is to be returned.
- * @return an unmodifiable view of the specified map.
- */
- public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
- return new UnmodifiableMap<K,V>(m);
- }
-
- /**
- * @serial include
- */
- private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = -1034234728574286014L;
-
- private final Map<? extends K, ? extends V> m;
-
- UnmodifiableMap(Map<? extends K, ? extends V> m) {
- if (m==null)
- throw new NullPointerException();
- this.m = m;
- }
-
- public int size() {return m.size();}
- public boolean isEmpty() {return m.isEmpty();}
- public boolean containsKey(Object key) {return m.containsKey(key);}
- public boolean containsValue(Object val) {return m.containsValue(val);}
- public V get(Object key) {return m.get(key);}
-
- public V put(K key, V value) {
- throw new UnsupportedOperationException();
- }
- public V remove(Object key) {
- throw new UnsupportedOperationException();
- }
- public void putAll(Map<? extends K, ? extends V> t) {
- throw new UnsupportedOperationException();
- }
- public void clear() {
- throw new UnsupportedOperationException();
- }
-
- private transient Set<K> keySet = null;
- private transient Set<Map.Entry<K,V>> entrySet = null;
- private transient Collection<V> values = null;
-
- public Set<K> keySet() {
- if (keySet==null)
- keySet = unmodifiableSet(m.keySet());
- return keySet;
- }
-
- public Set<Map.Entry<K,V>> entrySet() {
- if (entrySet==null)
- entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
- return entrySet;
- }
-
- public Collection<V> values() {
- if (values==null)
- values = unmodifiableCollection(m.values());
- return values;
- }
-
- public boolean equals(Object o) {return m.equals(o);}
- public int hashCode() {return m.hashCode();}
- public String toString() {return m.toString();}
-
- /**
- * We need this class in addition to UnmodifiableSet as
- * Map.Entries themselves permit modification of the backing Map
- * via their setValue operation. This class is subtle: there are
- * many possible attacks that must be thwarted.
- *
- * @serial include
- */
- static class UnmodifiableEntrySet<K,V>
- extends UnmodifiableSet<Map.Entry<K,V>> {
- private static final long serialVersionUID = 7854390611657943733L;
-
- UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
- super((Set<Map.Entry<K,V>>)(Set)s);
- }
- public Iterator<Map.Entry<K,V>> iterator() {
- return new Iterator<Map.Entry<K,V>>() {
- Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
-
- public boolean hasNext() {
- return i.hasNext();
- }
- public Map.Entry<K,V> next() {
- return new UnmodifiableEntry<K,V>(i.next());
- }
- public void remove() {
- throw new UnsupportedOperationException();
- }
- };
- }
-
- public Object[] toArray() {
- Object[] a = c.toArray();
- for (int i=0; i<a.length; i++)
- a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
- return a;
- }
-
- public <T> T[] toArray(T[] a) {
- // We don't pass a to c.toArray, to avoid window of
- // vulnerability wherein an unscrupulous multithreaded client
- // could get his hands on raw (unwrapped) Entries from c.
- Object[] arr =
- c.toArray(
- a.length==0 ? a :
- (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), 0));
-
- for (int i=0; i<arr.length; i++)
- arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
-
- if (arr.length > a.length)
- return (T[])arr;
-
- System.arraycopy(arr, 0, a, 0, arr.length);
- if (a.length > arr.length)
- a[arr.length] = null;
- return a;
- }
-
- /**
- * This method is overridden to protect the backing set against
- * an object with a nefarious equals function that senses
- * that the equality-candidate is Map.Entry and calls its
- * setValue method.
- */
- public boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- return c.contains(new UnmodifiableEntry<K,V>((Map.Entry<K,V>) o));
- }
-
- /**
- * The next two methods are overridden to protect against
- * an unscrupulous List whose contains(Object o) method senses
- * when o is a Map.Entry, and calls o.setValue.
- */
- public boolean containsAll(Collection<?> coll) {
- Iterator<?> e = coll.iterator();
- while (e.hasNext())
- if (!contains(e.next())) // Invokes safe contains() above
- return false;
- return true;
- }
- public boolean equals(Object o) {
- if (o == this)
- return true;
-
- if (!(o instanceof Set))
- return false;
- Set s = (Set) o;
- if (s.size() != c.size())
- return false;
- return containsAll(s); // Invokes safe containsAll() above
- }
-
- /**
- * This "wrapper class" serves two purposes: it prevents
- * the client from modifying the backing Map, by short-circuiting
- * the setValue method, and it protects the backing Map against
- * an ill-behaved Map.Entry that attempts to modify another
- * Map Entry when asked to perform an equality check.
- */
- private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
- private Map.Entry<? extends K, ? extends V> e;
-
- UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
-
- public K getKey() {return e.getKey();}
- public V getValue() {return e.getValue();}
- public V setValue(V value) {
- throw new UnsupportedOperationException();
- }
- public int hashCode() {return e.hashCode();}
- public boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry t = (Map.Entry)o;
- return eq(e.getKey(), t.getKey()) &&
- eq(e.getValue(), t.getValue());
- }
- public String toString() {return e.toString();}
- }
- }
- }
-
- /**
- * Returns an unmodifiable view of the specified sorted map. This method
- * allows modules to provide users with "read-only" access to internal
- * sorted maps. Query operations on the returned sorted map "read through"
- * to the specified sorted map. Attempts to modify the returned
- * sorted map, whether direct, via its collection views, or via its
- * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
- * an <tt>UnsupportedOperationException</tt>.<p>
- *
- * The returned sorted map will be serializable if the specified sorted map
- * is serializable.
- *
- * @param m the sorted map for which an unmodifiable view is to be
- * returned.
- * @return an unmodifiable view of the specified sorted map.
- */
- public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
- return new UnmodifiableSortedMap<K,V>(m);
- }
-
- /**
- * @serial include
- */
- static class UnmodifiableSortedMap<K,V>
- extends UnmodifiableMap<K,V>
- implements SortedMap<K,V>, Serializable {
- private static final long serialVersionUID = -8806743815996713206L;
-
- private SortedMap<K, ? extends V> sm;
-
- UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
-
- public Comparator<? super K> comparator() {return sm.comparator();}
-
- public SortedMap<K,V> subMap(K fromKey, K toKey) {
- return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
- }
- public SortedMap<K,V> headMap(K toKey) {
- return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
- }
- public SortedMap<K,V> tailMap(K fromKey) {
- return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
- }
-
- public K firstKey() {return sm.firstKey();}
- public K lastKey() {return sm.lastKey();}
- }
-
-
- // Synch Wrappers
-
- /**
- * Returns a synchronized (thread-safe) collection backed by the specified
- * collection. In order to guarantee serial access, it is critical that
- * <strong>all</strong> access to the backing collection is accomplished
- * through the returned collection.<p>
- *
- * It is imperative that the user manually synchronize on the returned
- * collection when iterating over it:
- * <pre>
- * Collection c = Collections.synchronizedCollection(myCollection);
- * ...
- * synchronized(c) {
- * Iterator i = c.iterator(); // Must be in the synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * Failure to follow this advice may result in non-deterministic behavior.
- *
- * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
- * and <tt>equals</tt> operations through to the backing collection, but
- * relies on <tt>Object</tt>'s equals and hashCode methods. This is
- * necessary to preserve the contracts of these operations in the case
- * that the backing collection is a set or a list.<p>
- *
- * The returned collection will be serializable if the specified collection
- * is serializable.
- *
- * @param c the collection to be "wrapped" in a synchronized collection.
- * @return a synchronized view of the specified collection.
- */
- public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
- return new SynchronizedCollection<T>(c);
- }
-
- static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
- return new SynchronizedCollection<T>(c, mutex);
- }
-
- /**
- * @serial include
- */
- static class SynchronizedCollection<E> implements Collection<E>, Serializable {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 3053995032091335093L;
-
- Collection<E> c; // Backing Collection
- Object mutex; // Object on which to synchronize
-
- SynchronizedCollection(Collection<E> c) {
- if (c==null)
- throw new NullPointerException();
- this.c = c;
- mutex = this;
- }
- SynchronizedCollection(Collection<E> c, Object mutex) {
- this.c = c;
- this.mutex = mutex;
- }
-
- public int size() {
- synchronized(mutex) {return c.size();}
- }
- public boolean isEmpty() {
- synchronized(mutex) {return c.isEmpty();}
- }
- public boolean contains(Object o) {
- synchronized(mutex) {return c.contains(o);}
- }
- public Object[] toArray() {
- synchronized(mutex) {return c.toArray();}
- }
- public <T> T[] toArray(T[] a) {
- synchronized(mutex) {return c.toArray(a);}
- }
-
- public Iterator<E> iterator() {
- return c.iterator(); // Must be manually synched by user!
- }
-
- public boolean add(E o) {
- synchronized(mutex) {return c.add(o);}
- }
- public boolean remove(Object o) {
- synchronized(mutex) {return c.remove(o);}
- }
-
- public boolean containsAll(Collection<?> coll) {
- synchronized(mutex) {return c.containsAll(coll);}
- }
- public boolean addAll(Collection<? extends E> coll) {
- synchronized(mutex) {return c.addAll(coll);}
- }
- public boolean removeAll(Collection<?> coll) {
- synchronized(mutex) {return c.removeAll(coll);}
- }
- public boolean retainAll(Collection<?> coll) {
- synchronized(mutex) {return c.retainAll(coll);}
- }
- public void clear() {
- synchronized(mutex) {c.clear();}
- }
- public String toString() {
- synchronized(mutex) {return c.toString();}
- }
- private void writeObject(ObjectOutputStream s) throws IOException {
- synchronized(mutex) {s.defaultWriteObject();}
- }
- }
-
- /**
- * Returns a synchronized (thread-safe) set backed by the specified
- * set. In order to guarantee serial access, it is critical that
- * <strong>all</strong> access to the backing set is accomplished
- * through the returned set.<p>
- *
- * It is imperative that the user manually synchronize on the returned
- * set when iterating over it:
- * <pre>
- * Set s = Collections.synchronizedSet(new HashSet());
- * ...
- * synchronized(s) {
- * Iterator i = s.iterator(); // Must be in the synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * Failure to follow this advice may result in non-deterministic behavior.
- *
- * <p>The returned set will be serializable if the specified set is
- * serializable.
- *
- * @param s the set to be "wrapped" in a synchronized set.
- * @return a synchronized view of the specified set.
- */
- public static <T> Set<T> synchronizedSet(Set<T> s) {
- return new SynchronizedSet<T>(s);
- }
-
- static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
- return new SynchronizedSet<T>(s, mutex);
- }
-
- /**
- * @serial include
- */
- static class SynchronizedSet<E>
- extends SynchronizedCollection<E>
- implements Set<E> {
- private static final long serialVersionUID = 487447009682186044L;
-
- SynchronizedSet(Set<E> s) {
- super(s);
- }
- SynchronizedSet(Set<E> s, Object mutex) {
- super(s, mutex);
- }
-
- public boolean equals(Object o) {
- synchronized(mutex) {return c.equals(o);}
- }
- public int hashCode() {
- synchronized(mutex) {return c.hashCode();}
- }
- }
-
- /**
- * Returns a synchronized (thread-safe) sorted set backed by the specified
- * sorted set. In order to guarantee serial access, it is critical that
- * <strong>all</strong> access to the backing sorted set is accomplished
- * through the returned sorted set (or its views).<p>
- *
- * It is imperative that the user manually synchronize on the returned
- * sorted set when iterating over it or any of its <tt>subSet</tt>,
- * <tt>headSet</tt>, or <tt>tailSet</tt> views.
- * <pre>
- * SortedSet s = Collections.synchronizedSortedSet(new HashSortedSet());
- * ...
- * synchronized(s) {
- * Iterator i = s.iterator(); // Must be in the synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * or:
- * <pre>
- * SortedSet s = Collections.synchronizedSortedSet(new HashSortedSet());
- * SortedSet s2 = s.headSet(foo);
- * ...
- * synchronized(s) { // Note: s, not s2!!!
- * Iterator i = s2.iterator(); // Must be in the synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * Failure to follow this advice may result in non-deterministic behavior.
- *
- * <p>The returned sorted set will be serializable if the specified
- * sorted set is serializable.
- *
- * @param s the sorted set to be "wrapped" in a synchronized sorted set.
- * @return a synchronized view of the specified sorted set.
- */
- public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
- return new SynchronizedSortedSet<T>(s);
- }
-
- /**
- * @serial include
- */
- static class SynchronizedSortedSet<E>
- extends SynchronizedSet<E>
- implements SortedSet<E>
- {
- private static final long serialVersionUID = 8695801310862127406L;
-
- private SortedSet<E> ss;
-
- SynchronizedSortedSet(SortedSet<E> s) {
- super(s);
- ss = s;
- }
- SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
- super(s, mutex);
- ss = s;
- }
-
- public Comparator<? super E> comparator() {
- synchronized(mutex) {return ss.comparator();}
- }
-
- public SortedSet<E> subSet(E fromElement, E toElement) {
- synchronized(mutex) {
- return new SynchronizedSortedSet<E>(
- ss.subSet(fromElement, toElement), mutex);
- }
- }
- public SortedSet<E> headSet(E toElement) {
- synchronized(mutex) {
- return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
- }
- }
- public SortedSet<E> tailSet(E fromElement) {
- synchronized(mutex) {
- return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
- }
- }
-
- public E first() {
- synchronized(mutex) {return ss.first();}
- }
- public E last() {
- synchronized(mutex) {return ss.last();}
- }
- }
-
- /**
- * Returns a synchronized (thread-safe) list backed by the specified
- * list. In order to guarantee serial access, it is critical that
- * <strong>all</strong> access to the backing list is accomplished
- * through the returned list.<p>
- *
- * It is imperative that the user manually synchronize on the returned
- * list when iterating over it:
- * <pre>
- * List list = Collections.synchronizedList(new ArrayList());
- * ...
- * synchronized(list) {
- * Iterator i = list.iterator(); // Must be in synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * Failure to follow this advice may result in non-deterministic behavior.
- *
- * <p>The returned list will be serializable if the specified list is
- * serializable.
- *
- * @param list the list to be "wrapped" in a synchronized list.
- * @return a synchronized view of the specified list.
- */
- public static <T> List<T> synchronizedList(List<T> list) {
- return (list instanceof RandomAccess ?
- new SynchronizedRandomAccessList<T>(list) :
- new SynchronizedList<T>(list));
- }
-
- static <T> List<T> synchronizedList(List<T> list, Object mutex) {
- return (list instanceof RandomAccess ?
- new SynchronizedRandomAccessList<T>(list, mutex) :
- new SynchronizedList<T>(list, mutex));
- }
-
- /**
- * @serial include
- */
- static class SynchronizedList<E>
- extends SynchronizedCollection<E>
- implements List<E> {
- static final long serialVersionUID = -7754090372962971524L;
-
- List<E> list;
-
- SynchronizedList(List<E> list) {
- super(list);
- this.list = list;
- }
- SynchronizedList(List<E> list, Object mutex) {
- super(list, mutex);
- this.list = list;
- }
-
- public boolean equals(Object o) {
- synchronized(mutex) {return list.equals(o);}
- }
- public int hashCode() {
- synchronized(mutex) {return list.hashCode();}
- }
-
- public E get(int index) {
- synchronized(mutex) {return list.get(index);}
- }
- public E set(int index, E element) {
- synchronized(mutex) {return list.set(index, element);}
- }
- public void add(int index, E element) {
- synchronized(mutex) {list.add(index, element);}
- }
- public E remove(int index) {
- synchronized(mutex) {return list.remove(index);}
- }
-
- public int indexOf(Object o) {
- synchronized(mutex) {return list.indexOf(o);}
- }
- public int lastIndexOf(Object o) {
- synchronized(mutex) {return list.lastIndexOf(o);}
- }
-
- public boolean addAll(int index, Collection<? extends E> c) {
- synchronized(mutex) {return list.addAll(index, c);}
- }
-
- public ListIterator<E> listIterator() {
- return list.listIterator(); // Must be manually synched by user
- }
-
- public ListIterator<E> listIterator(int index) {
- return list.listIterator(index); // Must be manually synched by user
- }
-
- public List<E> subList(int fromIndex, int toIndex) {
- synchronized(mutex) {
- return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
- mutex);
- }
- }
-
- /**
- * SynchronizedRandomAccessList instances are serialized as
- * SynchronizedList instances to allow them to be deserialized
- * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
- * This method inverts the transformation. As a beneficial
- * side-effect, it also grafts the RandomAccess marker onto
- * SynchronizedList instances that were serialized in pre-1.4 JREs.
- *
- * Note: Unfortunately, SynchronizedRandomAccessList instances
- * serialized in 1.4.1 and deserialized in 1.4 will become
- * SynchronizedList instances, as this method was missing in 1.4.
- */
- private Object readResolve() {
- return (list instanceof RandomAccess
- ? new SynchronizedRandomAccessList<E>(list)
- : this);
- }
- }
-
- /**
- * @serial include
- */
- static class SynchronizedRandomAccessList<E>
- extends SynchronizedList<E>
- implements RandomAccess {
-
- SynchronizedRandomAccessList(List<E> list) {
- super(list);
- }
-
- SynchronizedRandomAccessList(List<E> list, Object mutex) {
- super(list, mutex);
- }
-
- public List<E> subList(int fromIndex, int toIndex) {
- synchronized(mutex) {
- return new SynchronizedRandomAccessList<E>(
- list.subList(fromIndex, toIndex), mutex);
- }
- }
-
- static final long serialVersionUID = 1530674583602358482L;
-
- /**
- * Allows instances to be deserialized in pre-1.4 JREs (which do
- * not have SynchronizedRandomAccessList). SynchronizedList has
- * a readResolve method that inverts this transformation upon
- * deserialization.
- */
- private Object writeReplace() {
- return new SynchronizedList<E>(list);
- }
- }
-
- /**
- * Returns a synchronized (thread-safe) map backed by the specified
- * map. In order to guarantee serial access, it is critical that
- * <strong>all</strong> access to the backing map is accomplished
- * through the returned map.<p>
- *
- * It is imperative that the user manually synchronize on the returned
- * map when iterating over any of its collection views:
- * <pre>
- * Map m = Collections.synchronizedMap(new HashMap());
- * ...
- * Set s = m.keySet(); // Needn't be in synchronized block
- * ...
- * synchronized(m) { // Synchronizing on m, not s!
- * Iterator i = s.iterator(); // Must be in synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * Failure to follow this advice may result in non-deterministic behavior.
- *
- * <p>The returned map will be serializable if the specified map is
- * serializable.
- *
- * @param m the map to be "wrapped" in a synchronized map.
- * @return a synchronized view of the specified map.
- */
- public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
- return new SynchronizedMap<K,V>(m);
- }
-
- /**
- * @serial include
- */
- private static class SynchronizedMap<K,V>
- implements Map<K,V>, Serializable {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 1978198479659022715L;
-
- private Map<K,V> m; // Backing Map
- Object mutex; // Object on which to synchronize
-
- SynchronizedMap(Map<K,V> m) {
- if (m==null)
- throw new NullPointerException();
- this.m = m;
- mutex = this;
- }
-
- SynchronizedMap(Map<K,V> m, Object mutex) {
- this.m = m;
- this.mutex = mutex;
- }
-
- public int size() {
- synchronized(mutex) {return m.size();}
- }
- public boolean isEmpty(){
- synchronized(mutex) {return m.isEmpty();}
- }
- public boolean containsKey(Object key) {
- synchronized(mutex) {return m.containsKey(key);}
- }
- public boolean containsValue(Object value){
- synchronized(mutex) {return m.containsValue(value);}
- }
- public V get(Object key) {
- synchronized(mutex) {return m.get(key);}
- }
-
- public V put(K key, V value) {
- synchronized(mutex) {return m.put(key, value);}
- }
- public V remove(Object key) {
- synchronized(mutex) {return m.remove(key);}
- }
- public void putAll(Map<? extends K, ? extends V> map) {
- synchronized(mutex) {m.putAll(map);}
- }
- public void clear() {
- synchronized(mutex) {m.clear();}
- }
-
- private transient Set<K> keySet = null;
- private transient Set<Map.Entry<K,V>> entrySet = null;
- private transient Collection<V> values = null;
-
- public Set<K> keySet() {
- synchronized(mutex) {
- if (keySet==null)
- keySet = new SynchronizedSet<K>(m.keySet(), mutex);
- return keySet;
- }
- }
-
- public Set<Map.Entry<K,V>> entrySet() {
- synchronized(mutex) {
- if (entrySet==null)
- entrySet = new SynchronizedSet<Map.Entry<K,V>>((Set<Map.Entry<K,V>>)m.entrySet(), mutex);
- return entrySet;
- }
- }
-
- public Collection<V> values() {
- synchronized(mutex) {
- if (values==null)
- values = new SynchronizedCollection<V>(m.values(), mutex);
- return values;
- }
- }
-
- public boolean equals(Object o) {
- synchronized(mutex) {return m.equals(o);}
- }
- public int hashCode() {
- synchronized(mutex) {return m.hashCode();}
- }
- public String toString() {
- synchronized(mutex) {return m.toString();}
- }
- private void writeObject(ObjectOutputStream s) throws IOException {
- synchronized(mutex) {s.defaultWriteObject();}
- }
- }
-
- /**
- * Returns a synchronized (thread-safe) sorted map backed by the specified
- * sorted map. In order to guarantee serial access, it is critical that
- * <strong>all</strong> access to the backing sorted map is accomplished
- * through the returned sorted map (or its views).<p>
- *
- * It is imperative that the user manually synchronize on the returned
- * sorted map when iterating over any of its collection views, or the
- * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
- * <tt>tailMap</tt> views.
- * <pre>
- * SortedMap m = Collections.synchronizedSortedMap(new HashSortedMap());
- * ...
- * Set s = m.keySet(); // Needn't be in synchronized block
- * ...
- * synchronized(m) { // Synchronizing on m, not s!
- * Iterator i = s.iterator(); // Must be in synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * or:
- * <pre>
- * SortedMap m = Collections.synchronizedSortedMap(new HashSortedMap());
- * SortedMap m2 = m.subMap(foo, bar);
- * ...
- * Set s2 = m2.keySet(); // Needn't be in synchronized block
- * ...
- * synchronized(m) { // Synchronizing on m, not m2 or s2!
- * Iterator i = s.iterator(); // Must be in synchronized block
- * while (i.hasNext())
- * foo(i.next());
- * }
- * </pre>
- * Failure to follow this advice may result in non-deterministic behavior.
- *
- * <p>The returned sorted map will be serializable if the specified
- * sorted map is serializable.
- *
- * @param m the sorted map to be "wrapped" in a synchronized sorted map.
- * @return a synchronized view of the specified sorted map.
- */
- public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
- return new SynchronizedSortedMap<K,V>(m);
- }
-
-
- /**
- * @serial include
- */
- static class SynchronizedSortedMap<K,V>
- extends SynchronizedMap<K,V>
- implements SortedMap<K,V>
- {
- private static final long serialVersionUID = -8798146769416483793L;
-
- private SortedMap<K,V> sm;
-
- SynchronizedSortedMap(SortedMap<K,V> m) {
- super(m);
- sm = m;
- }
- SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
- super(m, mutex);
- sm = m;
- }
-
- public Comparator<? super K> comparator() {
- synchronized(mutex) {return sm.comparator();}
- }
-
- public SortedMap<K,V> subMap(K fromKey, K toKey) {
- synchronized(mutex) {
- return new SynchronizedSortedMap<K,V>(
- sm.subMap(fromKey, toKey), mutex);
- }
- }
- public SortedMap<K,V> headMap(K toKey) {
- synchronized(mutex) {
- return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
- }
- }
- public SortedMap<K,V> tailMap(K fromKey) {
- synchronized(mutex) {
- return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
- }
- }
-
- public K firstKey() {
- synchronized(mutex) {return sm.firstKey();}
- }
- public K lastKey() {
- synchronized(mutex) {return sm.lastKey();}
- }
- }
-
- // Dynamically typesafe collection wrappers
-
- /**
- * Returns a dynamically typesafe view of the specified collection. Any
- * attempt to insert an element of the wrong type will result in an
- * immediate <tt>ClassCastException</tt>. Assuming a collection contains
- * no incorrectly typed elements prior to the time a dynamically typesafe
- * view is generated, and that all subsequent access to the collection
- * takes place through the view, it is <i>guaranteed</i> that the
- * collection cannot contain an incorrectly typed element.
- *
- * <p>The generics mechanism in the language provides compile-time
- * (static) type checking, but it is possible to defeat this mechanism
- * with unchecked casts. Usually this is not a problem, as the compiler
- * issues warnings on all such unchecked operations. There are, however,
- * times when static type checking alone is not sufficient. For example,
- * suppose a collection is passed to a third-party library and it is
- * imperative that the library code not corrupt the collection by
- * inserting an element of the wrong type.
- *
- * <p>Another use of dynamically typesafe views is debugging. Suppose a
- * program fails with a <tt>ClassCastException</tt>, indicating that an
- * incorrectly typed element was put into a parameterized collection.
- * Unfortunately, the exception can occur at any time after the erroneous
- * element is inserted, so it typically provides little or no information
- * as to the real source of the problem. If the problem is reproducible,
- * one can quickly determine its source by temporarily modifying the
- * program to wrap the collection with a dynamically typesafe view.
- * For example, this declaration:
- * <pre>
- * Collection<String> c = new HashSet<String>();
- * </pre>
- * may be replaced temporarily by this one:
- * <pre>
- * Collection<String> c = Collections.checkedCollection(
- * new HashSet<String>(), String.class);
- * </pre>
- * Running the program again will cause it to fail at the point where
- * an incorrectly typed element is inserted into the collection, clearly
- * identifying the source of the problem. Once the problem is fixed, the
- * modified declaration may be reverted back to the original.
- *
- * <p>The returned collection does <i>not</i> pass the hashCode and equals
- * operations through to the backing collection, but relies on
- * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
- * is necessary to preserve the contracts of these operations in the case
- * that the backing collection is a set or a list.
- *
- * <p>The returned collection will be serializable if the specified
- * collection is serializable.
- *
- * @param c the collection for which a dynamically typesafe view is to be
- * returned
- * @param type the type of element that <tt>c</tt> is permitted to hold
- * @return a dynamically typesafe view of the specified collection
- * @since 1.5
- */
- public static <E> Collection<E> checkedCollection(Collection<E> c,
- Class<E> type) {
- return new CheckedCollection<E>(c, type);
- }
-
- /**
- * @serial include
- */
- static class CheckedCollection<E> implements Collection<E>, Serializable {
- private static final long serialVersionUID = 1578914078182001775L;
-
- final Collection<E> c;
- final Class<E> type;
-
- void typeCheck(Object o) {
- if (!type.isInstance(o))
- throw new ClassCastException("Attempt to insert " +
- o.getClass() + " element into collection with element type "
- + type);
- }
-
- CheckedCollection(Collection<E> c, Class<E> type) {
- if (c==null || type == null)
- throw new NullPointerException();
- this.c = c;
- this.type = type;
- }
-
- public int size() { return c.size(); }
- public boolean isEmpty() { return c.isEmpty(); }
- public boolean contains(Object o) { return c.contains(o); }
- public Object[] toArray() { return c.toArray(); }
- public <T> T[] toArray(T[] a) { return c.toArray(a); }
- public String toString() { return c.toString(); }
- public Iterator<E> iterator() { return c.iterator(); }
- public boolean remove(Object o) { return c.remove(o); }
- public boolean containsAll(Collection<?> coll) {
- return c.containsAll(coll);
- }
- public boolean removeAll(Collection<?> coll) {
- return c.removeAll(coll);
- }
- public boolean retainAll(Collection<?> coll) {
- return c.retainAll(coll);
- }
- public void clear() {
- c.clear();
- }
-
- public boolean add(E o){
- typeCheck(o);
- return c.add(o);
- }
-
- public boolean addAll(Collection<? extends E> coll) {
- /*
- * Dump coll into an array of the required type. This serves
- * three purposes: it insulates us from concurrent changes in
- * the contents of coll, it type-checks all of the elements in
- * coll, and it provides all-or-nothing semantics(which we
- * wouldn't get if we type-checked each element as we added it).
- */
- E[] a = null;
- try {
- a = coll.toArray(zeroLengthElementArray());
- } catch(ArrayStoreException e) {
- throw new ClassCastException();
- }
-
- boolean result = false;
- for (E e : a)
- result |= c.add(e);
- return result;
- }
-
- private E[] zeroLengthElementArray = null; // Lazily initialized
-
- /*
- * We don't need locking or volatile, because it's OK if we create
- * several zeroLengthElementArrays, and they're immutable.
- */
- E[] zeroLengthElementArray() {
- if (zeroLengthElementArray == null)
- zeroLengthElementArray = (E[]) Array.newInstance(type, 0);
- return zeroLengthElementArray;
- }
- }
-
- /**
- * Returns a dynamically typesafe view of the specified set.
- * Any attempt to insert an element of the wrong type will result in
- * an immediate <tt>ClassCastException</tt>. Assuming a set contains
- * no incorrectly typed elements prior to the time a dynamically typesafe
- * view is generated, and that all subsequent access to the set
- * takes place through the view, it is <i>guaranteed</i> that the
- * set cannot contain an incorrectly typed element.
- *
- * <p>A discussion of the use of dynamically typesafe views may be
- * found in the documentation for the {@link #checkedCollection checkedCollection}
- * method.
- *
- * <p>The returned set will be serializable if the specified set is
- * serializable.
- *
- * @param s the set for which a dynamically typesafe view is to be
- * returned
- * @param type the type of element that <tt>s</tt> is permitted to hold
- * @return a dynamically typesafe view of the specified set
- * @since 1.5
- */
- public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
- return new CheckedSet<E>(s, type);
- }
-
- /**
- * @serial include
- */
- static class CheckedSet<E> extends CheckedCollection<E>
- implements Set<E>, Serializable
- {
- private static final long serialVersionUID = 4694047833775013803L;
-
- CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
-
- public boolean equals(Object o) { return c.equals(o); }
- public int hashCode() { return c.hashCode(); }
- }
-
- /**
- * Returns a dynamically typesafe view of the specified sorted set. Any
- * attempt to insert an element of the wrong type will result in an
- * immediate <tt>ClassCastException</tt>. Assuming a sorted set contains
- * no incorrectly typed elements prior to the time a dynamically typesafe
- * view is generated, and that all subsequent access to the sorted set
- * takes place through the view, it is <i>guaranteed</i> that the sorted
- * set cannot contain an incorrectly typed element.
- *
- * <p>A discussion of the use of dynamically typesafe views may be
- * found in the documentation for the {@link #checkedCollection checkedCollection}
- * method.
- *
- * <p>The returned sorted set will be serializable if the specified sorted
- * set is serializable.
- *
- * @param s the sorted set for which a dynamically typesafe view is to be
- * returned
- * @param type the type of element that <tt>s</tt> is permitted to hold
- * @return a dynamically typesafe view of the specified sorted set
- * @since 1.5
- */
- public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
- Class<E> type) {
- return new CheckedSortedSet<E>(s, type);
- }
-
- /**
- * @serial include
- */
- static class CheckedSortedSet<E> extends CheckedSet<E>
- implements SortedSet<E>, Serializable
- {
- private static final long serialVersionUID = 1599911165492914959L;
- private final SortedSet<E> ss;
-
- CheckedSortedSet(SortedSet<E> s, Class<E> type) {
- super(s, type);
- ss = s;
- }
-
- public Comparator<? super E> comparator() { return ss.comparator(); }
- public E first() { return ss.first(); }
- public E last() { return ss.last(); }
-
- public SortedSet<E> subSet(E fromElement, E toElement) {
- return new CheckedSortedSet<E>(ss.subSet(fromElement,toElement),
- type);
- }
- public SortedSet<E> headSet(E toElement) {
- return new CheckedSortedSet<E>(ss.headSet(toElement), type);
- }
- public SortedSet<E> tailSet(E fromElement) {
- return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
- }
- }
-
- /**
- * Returns a dynamically typesafe view of the specified list.
- * Any attempt to insert an element of the wrong type will result in
- * an immediate <tt>ClassCastException</tt>. Assuming a list contains
- * no incorrectly typed elements prior to the time a dynamically typesafe
- * view is generated, and that all subsequent access to the list
- * takes place through the view, it is <i>guaranteed</i> that the
- * list cannot contain an incorrectly typed element.
- *
- * <p>A discussion of the use of dynamically typesafe views may be
- * found in the documentation for the {@link #checkedCollection checkedCollection}
- * method.
- *
- * <p>The returned list will be serializable if the specified list is
- * serializable.
- *
- * @param list the list for which a dynamically typesafe view is to be
- * returned
- * @param type the type of element that <tt>list</tt> is permitted to hold
- * @return a dynamically typesafe view of the specified list
- * @since 1.5
- */
- public static <E> List<E> checkedList(List<E> list, Class<E> type) {
- return (list instanceof RandomAccess ?
- new CheckedRandomAccessList<E>(list, type) :
- new CheckedList<E>(list, type));
- }
-
- /**
- * @serial include
- */
- static class CheckedList<E> extends CheckedCollection<E>
- implements List<E>
- {
- static final long serialVersionUID = 65247728283967356L;
- final List<E> list;
-
- CheckedList(List<E> list, Class<E> type) {
- super(list, type);
- this.list = list;
- }
-
- public boolean equals(Object o) { return list.equals(o); }
- public int hashCode() { return list.hashCode(); }
- public E get(int index) { return list.get(index); }
- public E remove(int index) { return list.remove(index); }
- public int indexOf(Object o) { return list.indexOf(o); }
- public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
-
- public E set(int index, E element) {
- typeCheck(element);
- return list.set(index, element);
- }
-
- public void add(int index, E element) {
- typeCheck(element);
- list.add(index, element);
- }
-
- public boolean addAll(int index, Collection<? extends E> c) {
- // See CheckCollection.addAll, above, for an explanation
- E[] a = null;
- try {
- a = c.toArray(zeroLengthElementArray());
- } catch(ArrayStoreException e) {
- throw new ClassCastException();
- }
-
- return list.addAll(index, Arrays.asList(a));
- }
- public ListIterator<E> listIterator() { return listIterator(0); }
-
- public ListIterator<E> listIterator(final int index) {
- return new ListIterator<E>() {
- ListIterator<E> i = list.listIterator(index);
-
- public boolean hasNext() { return i.hasNext(); }
- public E next() { return i.next(); }
- public boolean hasPrevious() { return i.hasPrevious(); }
- public E previous() { return i.previous(); }
- public int nextIndex() { return i.nextIndex(); }
- public int previousIndex() { return i.previousIndex(); }
- public void remove() { i.remove(); }
-
- public void set(E o) {
- typeCheck(o);
- i.set(o);
- }
-
- public void add(E o) {
- typeCheck(o);
- i.add(o);
- }
- };
- }
-
- public List<E> subList(int fromIndex, int toIndex) {
- return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
- }
- }
-
- /**
- * @serial include
- */
- static class CheckedRandomAccessList<E> extends CheckedList<E>
- implements RandomAccess
- {
- private static final long serialVersionUID = 1638200125423088369L;
-
- CheckedRandomAccessList(List<E> list, Class<E> type) {
- super(list, type);
- }
-
- public List<E> subList(int fromIndex, int toIndex) {
- return new CheckedRandomAccessList<E>(
- list.subList(fromIndex, toIndex), type);
- }
- }
-
- /**
- * Returns a dynamically typesafe view of the specified map. Any attempt
- * to insert a mapping whose key or value have the wrong type will result
- * in an immediate <tt>ClassCastException</tt>. Similarly, any attempt to
- * modify the value currently associated with a key will result in an
- * immediate <tt>ClassCastException</tt>, whether the modification is
- * attempted directly through the map itself, or through a {@link
- * Map.Entry} instance obtained from the map's {@link Map#entrySet()
- * entry set} view.
- *
- * <p>Assuming a map contains no incorrectly typed keys or values
- * prior to the time a dynamically typesafe view is generated, and
- * that all subsequent access to the map takes place through the view
- * (or one of its collection views), it is <i>guaranteed</i> that the
- * map cannot contain an incorrectly typed key or value.
- *
- * <p>A discussion of the use of dynamically typesafe views may be
- * found in the documentation for the {@link #checkedCollection checkedCollection}
- * method.
- *
- * <p>The returned map will be serializable if the specified map is
- * serializable.
- *
- * @param m the map for which a dynamically typesafe view is to be
- * returned
- * @param keyType the type of key that <tt>m</tt> is permitted to hold
- * @param valueType the type of value that <tt>m</tt> is permitted to hold
- * @return a dynamically typesafe view of the specified map
- * @since 1.5
- */
- public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
- Class<V> valueType) {
- return new CheckedMap<K,V>(m, keyType, valueType);
- }
-
-
- /**
- * @serial include
- */
- private static class CheckedMap<K,V> implements Map<K,V>,
- Serializable
- {
- private static final long serialVersionUID = 5742860141034234728L;
-
- private final Map<K, V> m;
- final Class<K> keyType;
- final Class<V> valueType;
-
- private void typeCheck(Object key, Object value) {
- if (!keyType.isInstance(key))
- throw new ClassCastException("Attempt to insert " +
- key.getClass() + " key into collection with key type "
- + keyType);
-
- if (!valueType.isInstance(value))
- throw new ClassCastException("Attempt to insert " +
- value.getClass() +" value into collection with value type "
- + valueType);
- }
-
- CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
- if (m == null || keyType == null || valueType == null)
- throw new NullPointerException();
- this.m = m;
- this.keyType = keyType;
- this.valueType = valueType;
- }
-
- public int size() { return m.size(); }
- public boolean isEmpty() { return m.isEmpty(); }
- public boolean containsKey(Object key) { return m.containsKey(key); }
- public boolean containsValue(Object v) { return m.containsValue(v); }
- public V get(Object key) { return m.get(key); }
- public V remove(Object key) { return m.remove(key); }
- public void clear() { m.clear(); }
- public Set<K> keySet() { return m.keySet(); }
- public Collection<V> values() { return m.values(); }
- public boolean equals(Object o) { return m.equals(o); }
- public int hashCode() { return m.hashCode(); }
- public String toString() { return m.toString(); }
-
- public V put(K key, V value) {
- typeCheck(key, value);
- return m.put(key, value);
- }
-
- public void putAll(Map<? extends K, ? extends V> t) {
- // See CheckCollection.addAll, above, for an explanation
- K[] keys = null;
- try {
- keys = t.keySet().toArray(zeroLengthKeyArray());
- } catch(ArrayStoreException e) {
- throw new ClassCastException();
- }
- V[] values = null;
- try {
- values = t.values().toArray(zeroLengthValueArray());
- } catch(ArrayStoreException e) {
- throw new ClassCastException();
- }
-
- if (keys.length != values.length)
- throw new ConcurrentModificationException();
-
- for (int i = 0; i < keys.length; i++)
- m.put(keys[i], values[i]);
- }
-
- // Lazily initialized
- private K[] zeroLengthKeyArray = null;
- private V[] zeroLengthValueArray = null;
-
- /*
- * We don't need locking or volatile, because it's OK if we create
- * several zeroLengthValueArrays, and they're immutable.
- */
- private K[] zeroLengthKeyArray() {
- if (zeroLengthKeyArray == null)
- zeroLengthKeyArray = (K[]) Array.newInstance(keyType, 0);
- return zeroLengthKeyArray;
- }
- private V[] zeroLengthValueArray() {
- if (zeroLengthValueArray == null)
- zeroLengthValueArray = (V[]) Array.newInstance(valueType, 0);
- return zeroLengthValueArray;
- }
-
- private transient Set<Map.Entry<K,V>> entrySet = null;
-
- public Set<Map.Entry<K,V>> entrySet() {
- if (entrySet==null)
- entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
- return entrySet;
- }
-
- /**
- * We need this class in addition to CheckedSet as Map.Entry permits
- * modification of the backing Map via the setValue operation. This
- * class is subtle: there are many possible attacks that must be
- * thwarted.
- *
- * @serial exclude
- */
- static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
- Set<Map.Entry<K,V>> s;
- Class<V> valueType;
-
- CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
- this.s = s;
- this.valueType = valueType;
- }
-
- public int size() { return s.size(); }
- public boolean isEmpty() { return s.isEmpty(); }
- public String toString() { return s.toString(); }
- public int hashCode() { return s.hashCode(); }
- public boolean remove(Object o) { return s.remove(o); }
- public boolean removeAll(Collection<?> coll) {
- return s.removeAll(coll);
- }
- public boolean retainAll(Collection<?> coll) {
- return s.retainAll(coll);
- }
- public void clear() {
- s.clear();
- }
-
- public boolean add(Map.Entry<K, V> o){
- throw new UnsupportedOperationException();
- }
- public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
- throw new UnsupportedOperationException();
- }
-
-
- public Iterator<Map.Entry<K,V>> iterator() {
- return new Iterator<Map.Entry<K,V>>() {
- Iterator<Map.Entry<K, V>> i = s.iterator();
-
- public boolean hasNext() { return i.hasNext(); }
- public void remove() { i.remove(); }
-
- public Map.Entry<K,V> next() {
- return new CheckedEntry<K,V>(i.next(), valueType);
- }
- };
- }
-
- public Object[] toArray() {
- Object[] source = s.toArray();
-
- /*
- * Ensure that we don't get an ArrayStoreException even if
- * s.toArray returns an array of something other than Object
- */
- Object[] dest = (CheckedEntry.class.isInstance(
- source.getClass().getComponentType()) ? source :
- new Object[source.length]);
-
- for (int i = 0; i < source.length; i++)
- dest[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)source[i],
- valueType);
- return dest;
- }
-
- public <T> T[] toArray(T[] a) {
- // We don't pass a to s.toArray, to avoid window of
- // vulnerability wherein an unscrupulous multithreaded client
- // could get his hands on raw (unwrapped) Entries from s.
- Object[] arr = s.toArray(a.length==0 ? a :
- (T[])Array.newInstance(a.getClass().getComponentType(), 0));
-
- for (int i=0; i<arr.length; i++)
- arr[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)arr[i],
- valueType);
- if (arr.length > a.length)
- return (T[])arr;
-
- System.arraycopy(arr, 0, a, 0, arr.length);
- if (a.length > arr.length)
- a[arr.length] = null;
- return a;
- }
-
- /**
- * This method is overridden to protect the backing set against
- * an object with a nefarious equals function that senses
- * that the equality-candidate is Map.Entry and calls its
- * setValue method.
- */
- public boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- return s.contains(
- new CheckedEntry<K,V>((Map.Entry<K,V>) o, valueType));
- }
-
- /**
- * The next two methods are overridden to protect against
- * an unscrupulous collection whose contains(Object o) method
- * senses when o is a Map.Entry, and calls o.setValue.
- */
- public boolean containsAll(Collection<?> coll) {
- Iterator<?> e = coll.iterator();
- while (e.hasNext())
- if (!contains(e.next())) // Invokes safe contains() above
- return false;
- return true;
- }
-
- public boolean equals(Object o) {
- if (o == this)
- return true;
- if (!(o instanceof Set))
- return false;
- Set<?> that = (Set<?>) o;
- if (that.size() != s.size())
- return false;
- return containsAll(that); // Invokes safe containsAll() above
- }
-
- /**
- * This "wrapper class" serves two purposes: it prevents
- * the client from modifying the backing Map, by short-circuiting
- * the setValue method, and it protects the backing Map against
- * an ill-behaved Map.Entry that attempts to modify another
- * Map Entry when asked to perform an equality check.
- */
- private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
- private Map.Entry<K, V> e;
- private Class<V> valueType;
-
- CheckedEntry(Map.Entry<K, V> e, Class<V> valueType) {
- this.e = e;
- this.valueType = valueType;
- }
-
- public K getKey() { return e.getKey(); }
- public V getValue() { return e.getValue(); }
- public int hashCode() { return e.hashCode(); }
- public String toString() { return e.toString(); }
-
-
- public V setValue(V value) {
- if (!valueType.isInstance(value))
- throw new ClassCastException("Attempt to insert " +
- value.getClass() +
- " value into collection with value type " + valueType);
- return e.setValue(value);
- }
-
- public boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry t = (Map.Entry)o;
- return eq(e.getKey(), t.getKey()) &&
- eq(e.getValue(), t.getValue());
- }
- }
- }
- }
-
- /**
- * Returns a dynamically typesafe view of the specified sorted map. Any
- * attempt to insert a mapping whose key or value have the wrong type will
- * result in an immediate <tt>ClassCastException</tt>. Similarly, any
- * attempt to modify the value currently associated with a key will result
- * in an immediate <tt>ClassCastException</tt>, whether the modification
- * is attempted directly through the map itself, or through a {@link
- * Map.Entry} instance obtained from the map's {@link Map#entrySet() entry
- * set} view.
- *
- * <p>Assuming a map contains no incorrectly typed keys or values
- * prior to the time a dynamically typesafe view is generated, and
- * that all subsequent access to the map takes place through the view
- * (or one of its collection views), it is <i>guaranteed</i> that the
- * map cannot contain an incorrectly typed key or value.
- *
- * <p>A discussion of the use of dynamically typesafe views may be
- * found in the documentation for the {@link #checkedCollection checkedCollection}
- * method.
- *
- * <p>The returned map will be serializable if the specified map is
- * serializable.
- *
- * @param m the map for which a dynamically typesafe view is to be
- * returned
- * @param keyType the type of key that <tt>m</tt> is permitted to hold
- * @param valueType the type of value that <tt>m</tt> is permitted to hold
- * @return a dynamically typesafe view of the specified map
- * @since 1.5
- */
- public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
- Class<K> keyType,
- Class<V> valueType) {
- return new CheckedSortedMap<K,V>(m, keyType, valueType);
- }
-
- /**
- * @serial include
- */
- static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
- implements SortedMap<K,V>, Serializable
- {
- private static final long serialVersionUID = 1599671320688067438L;
-
- private SortedMap<K, V> sm;
-
- CheckedSortedMap(SortedMap<K, V> m,
- Class<K> keyType, Class<V> valueType) {
- super(m, keyType, valueType);
- sm = m;
- }
-
- public Comparator<? super K> comparator() { return sm.comparator(); }
- public K firstKey() { return sm.firstKey(); }
- public K lastKey() { return sm.lastKey(); }
-
- public SortedMap<K,V> subMap(K fromKey, K toKey) {
- return new CheckedSortedMap<K,V>(sm.subMap(fromKey, toKey),
- keyType, valueType);
- }
-
- public SortedMap<K,V> headMap(K toKey) {
- return new CheckedSortedMap<K,V>(sm.headMap(toKey),
- keyType, valueType);
- }
-
- public SortedMap<K,V> tailMap(K fromKey) {
- return new CheckedSortedMap<K,V>(sm.tailMap(fromKey),
- keyType, valueType);
- }
- }
-
- // Miscellaneous
-
- /**
- * The empty set (immutable). This set is serializable.
- *
- * @see #emptySet()
- */
- public static final Set EMPTY_SET = new EmptySet();
-
- /**
- * Returns the empty set (immutable). This set is serializable.
- * Unlike the like-named field, this method is parameterized.
- *
- * <p>This example illustrates the type-safe way to obtain an empty set:
- * <pre>
- * Set<String> s = Collections.emptySet();
- * </pre>
- * Implementation note: Implementations of this method need not
- * create a separate <tt>Set</tt> object for each call. Using this
- * method is likely to have comparable cost to using the like-named
- * field. (Unlike this method, the field does not provide type safety.)
- *
- * @see #EMPTY_SET
- * @since 1.5
- */
- public static final <T> Set<T> emptySet() {
- return (Set<T>) EMPTY_SET;
- }
-
- /**
- * @serial include
- */
- private static class EmptySet extends AbstractSet<Object> implements Serializable {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 1582296315990362920L;
-
- public Iterator<Object> iterator() {
- return new Iterator<Object>() {
- public boolean hasNext() {
- return false;
- }
- public Object next() {
- throw new NoSuchElementException();
- }
- public void remove() {
- throw new UnsupportedOperationException();
- }
- };
- }
-
- public int size() {return 0;}
-
- public boolean contains(Object obj) {return false;}
-
- // Preserves singleton property
- private Object readResolve() {
- return EMPTY_SET;
- }
- }
-
- /**
- * The empty list (immutable). This list is serializable.
- *
- * @see #emptyList()
- */
- public static final List EMPTY_LIST = new EmptyList();
-
- /**
- * Returns the empty list (immutable). This list is serializable.
- *
- * <p>This example illustrates the type-safe way to obtain an empty list:
- * <pre>
- * List<String> s = Collections.emptyList();
- * </pre>
- * Implementation note: Implementations of this method need not
- * create a separate <tt>List</tt> object for each call. Using this
- * method is likely to have comparable cost to using the like-named
- * field. (Unlike this method, the field does not provide type safety.)
- *
- * @see #EMPTY_LIST
- * @since 1.5
- */
- public static final <T> List<T> emptyList() {
- return (List<T>) EMPTY_LIST;
- }
-
- /**
- * @serial include
- */
- private static class EmptyList
- extends AbstractList<Object>
- implements RandomAccess, Serializable {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 8842843931221139166L;
-
- public int size() {return 0;}
-
- public boolean contains(Object obj) {return false;}
-
- public Object get(int index) {
- throw new IndexOutOfBoundsException("Index: "+index);
- }
-
- // Preserves singleton property
- private Object readResolve() {
- return EMPTY_LIST;
- }
- }
-
- /**
- * The empty map (immutable). This map is serializable.
- *
- * @see #emptyMap()
- * @since 1.3
- */
- public static final Map EMPTY_MAP = new EmptyMap();
-
- /**
- * Returns the empty map (immutable). This map is serializable.
- *
- * <p>This example illustrates the type-safe way to obtain an empty set:
- * <pre>
- * Map<String, Date> s = Collections.emptyMap();
- * </pre>
- * Implementation note: Implementations of this method need not
- * create a separate <tt>Map</tt> object for each call. Using this
- * method is likely to have comparable cost to using the like-named
- * field. (Unlike this method, the field does not provide type safety.)
- *
- * @see #EMPTY_MAP
- * @since 1.5
- */
- public static final <K,V> Map<K,V> emptyMap() {
- return (Map<K,V>) EMPTY_MAP;
- }
-
- private static class EmptyMap
- extends AbstractMap<Object,Object>
- implements Serializable {
-
- private static final long serialVersionUID = 6428348081105594320L;
-
- public int size() {return 0;}
-
- public boolean isEmpty() {return true;}
-
- public boolean containsKey(Object key) {return false;}
-
- public boolean containsValue(Object value) {return false;}
-
- public Object get(Object key) {return null;}
-
- public Set<Object> keySet() {return Collections.<Object>emptySet();}
-
- public Collection<Object> values() {return Collections.<Object>emptySet();}
-
- public Set<Map.Entry<Object,Object>> entrySet() {
- return Collections.emptySet();
- }
-
- public boolean equals(Object o) {
- return (o instanceof Map) && ((Map)o).size()==0;
- }
-
- public int hashCode() {return 0;}
-
- // Preserves singleton property
- private Object readResolve() {
- return EMPTY_MAP;
- }
- }
-
- /**
- * Returns an immutable set containing only the specified object.
- * The returned set is serializable.
- *
- * @param o the sole object to be stored in the returned set.
- * @return an immutable set containing only the specified object.
- */
- public static <T> Set<T> singleton(T o) {
- return new SingletonSet<T>(o);
- }
-
- /**
- * @serial include
- */
- private static class SingletonSet<E>
- extends AbstractSet<E>
- implements Serializable
- {
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 3193687207550431679L;
-
- final private E element;
-
- SingletonSet(E o) {element = o;}
-
- public Iterator<E> iterator() {
- return new Iterator<E>() {
- private boolean hasNext = true;
- public boolean hasNext() {
- return hasNext;
- }
- public E next() {
- if (hasNext) {
- hasNext = false;
- return element;
- }
- throw new NoSuchElementException();
- }
- public void remove() {
- throw new UnsupportedOperationException();
- }
- };
- }
-
- public int size() {return 1;}
-
- public boolean contains(Object o) {return eq(o, element);}
- }
-
- /**
- * Returns an immutable list containing only the specified object.
- * The returned list is serializable.
- *
- * @param o the sole object to be stored in the returned list.
- * @return an immutable list containing only the specified object.
- * @since 1.3
- */
- public static <T> List<T> singletonList(T o) {
- return new SingletonList<T>(o);
- }
-
- private static class SingletonList<E>
- extends AbstractList<E>
- implements RandomAccess, Serializable {
-
- static final long serialVersionUID = 3093736618740652951L;
-
- private final E element;
-
- SingletonList(E obj) {element = obj;}
-
- public int size() {return 1;}
-
- public boolean contains(Object obj) {return eq(obj, element);}
-
- public E get(int index) {
- if (index != 0)
- throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
- return element;
- }
- }
-
- /**
- * Returns an immutable map, mapping only the specified key to the
- * specified value. The returned map is serializable.
- *
- * @param key the sole key to be stored in the returned map.
- * @param value the value to which the returned map maps <tt>key</tt>.
- * @return an immutable map containing only the specified key-value
- * mapping.
- * @since 1.3
- */
- public static <K,V> Map<K,V> singletonMap(K key, V value) {
- return new SingletonMap<K,V>(key, value);
- }
-
- private static class SingletonMap<K,V>
- extends AbstractMap<K,V>
- implements Serializable {
- private static final long serialVersionUID = -6979724477215052911L;
-
- private final K k;
- private final V v;
-
- SingletonMap(K key, V value) {
- k = key;
- v = value;
- }
-
- public int size() {return 1;}
-
- public boolean isEmpty() {return false;}
-
- public boolean containsKey(Object key) {return eq(key, k);}
-
- public boolean containsValue(Object value) {return eq(value, v);}
-
- public V get(Object key) {return (eq(key, k) ? v : null);}
-
- private transient Set<K> keySet = null;
- private transient Set<Map.Entry<K,V>> entrySet = null;
- private transient Collection<V> values = null;
-
- public Set<K> keySet() {
- if (keySet==null)
- keySet = singleton(k);
- return keySet;
- }
-
- public Set<Map.Entry<K,V>> entrySet() {
- if (entrySet==null)
- entrySet = singleton((Map.Entry<K,V>)new ImmutableEntry<K,V>(k, v));
- return entrySet;
- }
-
- public Collection<V> values() {
- if (values==null)
- values = singleton(v);
- return values;
- }
-
- private static class ImmutableEntry<K,V>
- implements Map.Entry<K,V> {
- final K k;
- final V v;
-
- ImmutableEntry(K key, V value) {
- k = key;
- v = value;
- }
-
- public K getKey() {return k;}
-
- public V getValue() {return v;}
-
- public V setValue(V value) {
- throw new UnsupportedOperationException();
- }
-
- public boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry e = (Map.Entry)o;
- return eq(e.getKey(), k) && eq(e.getValue(), v);
- }
-
- public int hashCode() {
- return ((k==null ? 0 : k.hashCode()) ^
- (v==null ? 0 : v.hashCode()));
- }
-
- public String toString() {
- return k+"="+v;
- }
- }
- }
-
- /**
- * Returns an immutable list consisting of <tt>n</tt> copies of the
- * specified object. The newly allocated data object is tiny (it contains
- * a single reference to the data object). This method is useful in
- * combination with the <tt>List.addAll</tt> method to grow lists.
- * The returned list is serializable.
- *
- * @param n the number of elements in the returned list.
- * @param o the element to appear repeatedly in the returned list.
- * @return an immutable list consisting of <tt>n</tt> copies of the
- * specified object.
- * @throws IllegalArgumentException if n < 0.
- * @see List#addAll(Collection)
- * @see List#addAll(int, Collection)
- */
- public static <T> List<T> nCopies(int n, T o) {
- return new CopiesList<T>(n, o);
- }
-
- /**
- * @serial include
- */
- private static class CopiesList<E>
- extends AbstractList<E>
- implements RandomAccess, Serializable
- {
- static final long serialVersionUID = 2739099268398711800L;
-
- int n;
- E element;
-
- CopiesList(int n, E o) {
- if (n < 0)
- throw new IllegalArgumentException("List length = " + n);
- this.n = n;
- element = o;
- }
-
- public int size() {
- return n;
- }
-
- public boolean contains(Object obj) {
- return n != 0 && eq(obj, element);
- }
-
- public E get(int index) {
- if (index<0 || index>=n)
- throw new IndexOutOfBoundsException("Index: "+index+
- ", Size: "+n);
- return element;
- }
- }
-
- /**
- * Returns a comparator that imposes the reverse of the <i>natural
- * ordering</i> on a collection of objects that implement the
- * <tt>Comparable</tt> interface. (The natural ordering is the ordering
- * imposed by the objects' own <tt>compareTo</tt> method.) This enables a
- * simple idiom for sorting (or maintaining) collections (or arrays) of
- * objects that implement the <tt>Comparable</tt> interface in
- * reverse-natural-order. For example, suppose a is an array of
- * strings. Then: <pre>
- * Arrays.sort(a, Collections.reverseOrder());
- * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
- *
- * The returned comparator is serializable.
- *
- * @return a comparator that imposes the reverse of the <i>natural
- * ordering</i> on a collection of objects that implement
- * the <tt>Comparable</tt> interface.
- * @see Comparable
- */
- public static <T> Comparator<T> reverseOrder() {
- return (Comparator<T>) REVERSE_ORDER;
- }
-
- private static final Comparator REVERSE_ORDER = new ReverseComparator();
-
- /**
- * @serial include
- */
- private static class ReverseComparator<T>
- implements Comparator<Comparable<Object>>, Serializable {
-
- // use serialVersionUID from JDK 1.2.2 for interoperability
- private static final long serialVersionUID = 7207038068494060240L;
-
- public int compare(Comparable<Object> c1, Comparable<Object> c2) {
- return c2.compareTo(c1);
- }
- }
-
- /**
- * Returns a comparator that imposes the reverse ordering of the specified
- * comparator. If the specified comparator is null, this method is
- * equivalent to {@link #reverseOrder()} (in other words, it returns a
- * comparator that imposes the reverse of the <i>natural ordering</i> on a
- * collection of objects that implement the Comparable interface).
- *
- * <p>The returned comparator is serializable (assuming the specified
- * comparator is also serializable or null).
- *
- * @return a comparator that imposes the reverse ordering of the
- * specified comparator.
- * @since 1.5
- */
- public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
- if (cmp == null)
- return new ReverseComparator(); // Unchecked warning!!
-
- return new ReverseComparator2<T>(cmp);
- }
-
- /**
- * @serial include
- */
- private static class ReverseComparator2<T> implements Comparator<T>,
- Serializable
- {
- private static final long serialVersionUID = 4374092139857L;
-
- /**
- * The comparator specified in the static factory. This will never
- * be null, as the static factory returns a ReverseComparator
- * instance if its argument is null.
- *
- * @serial
- */
- private Comparator<T> cmp;
-
- ReverseComparator2(Comparator<T> cmp) {
- assert cmp != null;
- this.cmp = cmp;
- }
-
- public int compare(T t1, T t2) {
- return cmp.compare(t2, t1);
- }
- }
-
- /**
- * Returns an enumeration over the specified collection. This provides
- * interoperability with legacy APIs that require an enumeration
- * as input.
- *
- * @param c the collection for which an enumeration is to be returned.
- * @return an enumeration over the specified collection.
- * @see Enumeration
- */
- public static <T> Enumeration<T> enumeration(final Collection<T> c) {
- return new Enumeration<T>() {
- Iterator<T> i = c.iterator();
-
- public boolean hasMoreElements() {
- return i.hasNext();
- }
-
- public T nextElement() {
- return i.next();
- }
- };
- }
-
- /**
- * Returns an array list containing the elements returned by the
- * specified enumeration in the order they are returned by the
- * enumeration. This method provides interoperability between
- * legacy APIs that return enumerations and new APIs that require
- * collections.
- *
- * @param e enumeration providing elements for the returned
- * array list
- * @return an array list containing the elements returned
- * by the specified enumeration.
- * @since 1.4
- * @see Enumeration
- * @see ArrayList
- */
- public static <T> ArrayList<T> list(Enumeration<T> e) {
- ArrayList<T> l = new ArrayList<T>();
- while (e.hasMoreElements())
- l.add(e.nextElement());
- return l;
- }
-
- /**
- * Returns true if the specified arguments are equal, or both null.
- */
- private static boolean eq(Object o1, Object o2) {
- return (o1==null ? o2==null : o1.equals(o2));
- }
-
- /**
- * Returns the number of elements in the specified collection equal to the
- * specified object. More formally, returns the number of elements
- * <tt>e</tt> in the collection such that
- * <tt>(o == null ? e == null : o.equals(e))</tt>.
- *
- * @param c the collection in which to determine the frequency
- * of <tt>o</tt>
- * @param o the object whose frequency is to be determined
- * @throws NullPointerException if <tt>c</tt> is null
- * @since 1.5
- */
- public static int frequency(Collection<?> c, Object o) {
- int result = 0;
- if (o == null) {
- for (Object e : c)
- if (e == null)
- result++;
- } else {
- for (Object e : c)
- if (o.equals(e))
- result++;
- }
- return result;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified collections have no
- * elements in common.
- *
- * <p>Care must be exercised if this method is used on collections that
- * do not comply with the general contract for <tt>Collection</tt>.
- * Implementations may elect to iterate over either collection and test
- * for containment in the other collection (or to perform any equivalent
- * computation). If either collection uses a nonstandard equality test
- * (as does a {@link SortedSet} whose ordering is not <i>compatible with
- * equals</i>, or the key set of an {@link IdentityHashMap}), both
- * collections must use the same nonstandard equality test, or the
- * result of this method is undefined.
- *
- * <p>Note that it is permissible to pass the same collection in both
- * parameters, in which case the method will return true if and only if
- * the collection is empty.
- *
- * @param c1 a collection
- * @param c2 a collection
- * @throws NullPointerException if either collection is null
- * @since 1.5
- */
- public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
- /*
- * We're going to iterate through c1 and test for inclusion in c2.
- * If c1 is a Set and c2 isn't, swap the collections. Otherwise,
- * place the shorter collection in c1. Hopefully this heuristic
- * will minimize the cost of the operation.
- */
- if ((c1 instanceof Set) && !(c2 instanceof Set) ||
- (c1.size() > c2.size())) {
- Collection<?> tmp = c1;
- c1 = c2;
- c2 = tmp;
- }
-
- for (Object e : c1)
- if (c2.contains(e))
- return false;
- return true;
- }
-
- /**
- * Adds all of the specified elements to the specified collection.
- * Elements to be added may be specified individually or as an array.
- * The behavior of this convenience method is identical to that of
- * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
- * to run significantly faster under most implementations.
- *
- * <p>When elements are specified individually, this method provides a
- * convenient way to add a few elements to an existing collection:
- * <pre>
- * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
- * </pre>
- *
- * @param c the collection into which <tt>elements</tt> are to be inserted
- * @param a the elements to insert into <tt>c</tt>
- * @return <tt>true</tt> if the collection changed as a result of the call
- * @throws UnsupportedOperationException if <tt>c</tt> does not support
- * the <tt>add</tt> method
- * @throws NullPointerException if <tt>elements</tt> contains one or more
- * null values and <tt>c</tt> does not support null elements, or
- * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
- * @throws IllegalArgumentException if some aspect of a value in
- * <tt>elements</tt> prevents it from being added to <tt>c</tt>
- * @see Collection#addAll(Collection)
- * @since 1.5
- */
- public static <T> boolean addAll(Collection<? super T> c, T... a) {
- boolean result = false;
- for (T e : a)
- result |= c.add(e);
- return result;
- }
- }