- /*
- * @(#)IdentityHashMap.java 1.22 04/02/19
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.util;
-
- import java.io.*;
-
- /**
- * This class implements the <tt>Map</tt> interface with a hash table, using
- * reference-equality in place of object-equality when comparing keys (and
- * values). In other words, in an <tt>IdentityHashMap</tt>, two keys
- * <tt>k1</tt> and <tt>k2</tt> are considered equal if and only if
- * <tt>(k1==k2)</tt>. (In normal <tt>Map</tt> implementations (like
- * <tt>HashMap</tt>) two keys <tt>k1</tt> and <tt>k2</tt> are considered equal
- * if and only if <tt>(k1==null ? k2==null : k1.equals(k2))</tt>.)
- *
- * <p><b>This class is <i>not</i> a general-purpose <tt>Map</tt>
- * implementation! While this class implements the <tt>Map</tt> interface, it
- * intentionally violates <tt>Map's</tt> general contract, which mandates the
- * use of the <tt>equals</tt> method when comparing objects. This class is
- * designed for use only in the rare cases wherein reference-equality
- * semantics are required.</b>
- *
- * <p>A typical use of this class is <i>topology-preserving object graph
- * transformations</i>, such as serialization or deep-copying. To perform such
- * a transformation, a program must maintain a "node table" that keeps track
- * of all the object references that have already been processed. The node
- * table must not equate distinct objects even if they happen to be equal.
- * Another typical use of this class is to maintain <i>proxy objects</i>. For
- * example, a debugging facility might wish to maintain a proxy object for
- * each object in the program being debugged.
- *
- * <p>This class provides all of the optional map operations, and permits
- * <tt>null</tt> values and the <tt>null</tt> key. This class makes no
- * guarantees as to the order of the map; in particular, it does not guarantee
- * that the order will remain constant over time.
- *
- * <p>This class provides constant-time performance for the basic
- * operations (<tt>get</tt> and <tt>put</tt>), assuming the system
- * identity hash function ({@link System#identityHashCode(Object)})
- * disperses elements properly among the buckets.
- *
- * <p>This class has one tuning parameter (which affects performance but not
- * semantics): <i>expected maximum size</i>. This parameter is the maximum
- * number of key-value mappings that the map is expected to hold. Internally,
- * this parameter is used to determine the number of buckets initially
- * comprising the hash table. The precise relationship between the expected
- * maximum size and the number of buckets is unspecified.
- *
- * <p>If the size of the map (the number of key-value mappings) sufficiently
- * exceeds the expected maximum size, the number of buckets is increased
- * Increasing the number of buckets ("rehashing") may be fairly expensive, so
- * it pays to create identity hash maps with a sufficiently large expected
- * maximum size. On the other hand, iteration over collection views requires
- * time proportional to the number of buckets in the hash table, so it
- * pays not to set the expected maximum size too high if you are especially
- * concerned with iteration performance or memory usage.
- *
- * <p><b>Note that this implementation is not synchronized.</b> If multiple
- * threads access this map concurrently, and at least one of the threads
- * modifies the map structurally, it <i>must</i> be synchronized externally.
- * (A structural modification is any operation that adds or deletes one or
- * more mappings; merely changing the value associated with a key that an
- * instance already contains is not a structural modification.) This is
- * typically accomplished by synchronizing on some object that naturally
- * encapsulates the map. If no such object exists, the map should be
- * "wrapped" using the <tt>Collections.synchronizedMap</tt> method. This is
- * best done at creation time, to prevent accidental unsynchronized access to
- * the map: <pre>
- * Map m = Collections.synchronizedMap(new HashMap(...));
- * </pre>
- *
- * <p>The iterators returned by all of this class's "collection view methods"
- * are <i>fail-fast</i>: if the map is structurally modified at any time after
- * the iterator is created, in any way except through the iterator's own
- * <tt>remove</tt> or <tt>add</tt> methods, the iterator will throw a
- * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent
- * modification, the iterator fails quickly and cleanly, rather than risking
- * arbitrary, non-deterministic behavior at an undetermined time in the
- * future.
- *
- * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
- * as it is, generally speaking, impossible to make any hard guarantees in the
- * presence of unsynchronized concurrent modification. Fail-fast iterators
- * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
- * Therefore, it would be wrong to write a program that depended on this
- * exception for its correctness: <i>fail-fast iterators should be used only
- * to detect bugs.</i>
- *
- * <p>Implementation note: This is a simple <i>linear-probe</i> hash table,
- * as described for example in texts by Sedgewick and Knuth. The array
- * alternates holding keys and values. (This has better locality for large
- * tables than does using separate arrays.) For many JRE implementations
- * and operation mixes, this class will yield better performance than
- * {@link HashMap} (which uses <i>chaining</i> rather than linear-probing).
- *
- * <p>This class is a member of the
- * <a href="{@docRoot}/../guide/collections/index.html">
- * Java Collections Framework</a>.
- *
- * @see System#identityHashCode(Object)
- * @see Object#hashCode()
- * @see Collection
- * @see Map
- * @see HashMap
- * @see TreeMap
- * @author Doug Lea and Josh Bloch
- * @since 1.4
- */
-
- public class IdentityHashMap<K,V>
- extends AbstractMap<K,V>
- implements Map<K,V>, java.io.Serializable, Cloneable
- {
- /**
- * The initial capacity used by the no-args constructor.
- * MUST be a power of two. The value 32 corresponds to the
- * (specified) expected maximum size of 21, given a load factor
- * of 2/3.
- */
- private static final int DEFAULT_CAPACITY = 32;
-
- /**
- * The minimum capacity, used if a lower value is implicitly specified
- * by either of the constructors with arguments. The value 4 corresponds
- * to an expected maximum size of 2, given a load factor of 2/3.
- * MUST be a power of two.
- */
- private static final int MINIMUM_CAPACITY = 4;
-
- /**
- * The maximum capacity, used if a higher value is implicitly specified
- * by either of the constructors with arguments.
- * MUST be a power of two <= 1<<29.
- */
- private static final int MAXIMUM_CAPACITY = 1 << 29;
-
- /**
- * The table, resized as necessary. Length MUST always be a power of two.
- */
- private transient Object[] table;
-
- /**
- * The number of key-value mappings contained in this identity hash map.
- *
- * @serial
- */
- private int size;
-
- /**
- * The number of modifications, to support fast-fail iterators
- */
- private transient volatile int modCount;
-
- /**
- * The next size value at which to resize (capacity * load factor).
- */
- private transient int threshold;
-
- /**
- * Value representing null keys inside tables.
- */
- private static final Object NULL_KEY = new Object();
-
- /**
- * Use NULL_KEY for key if it is null.
- */
-
- private static Object maskNull(Object key) {
- return (key == null ? NULL_KEY : key);
- }
-
- /**
- * Return internal representation of null key back to caller as null
- */
- private static Object unmaskNull(Object key) {
- return (key == NULL_KEY ? null : key);
- }
-
- /**
- * Constructs a new, empty identity hash map with a default expected
- * maximum size (21).
- */
- public IdentityHashMap() {
- init(DEFAULT_CAPACITY);
- }
-
- /**
- * Constructs a new, empty map with the specified expected maximum size.
- * Putting more than the expected number of key-value mappings into
- * the map may cause the internal data structure to grow, which may be
- * somewhat time-consuming.
- *
- * @param expectedMaxSize the expected maximum size of the map.
- * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative
- */
- public IdentityHashMap(int expectedMaxSize) {
- if (expectedMaxSize < 0)
- throw new IllegalArgumentException("expectedMaxSize is negative: "
- + expectedMaxSize);
- init(capacity(expectedMaxSize));
- }
-
- /**
- * Returns the appropriate capacity for the specified expected maximum
- * size. Returns the smallest power of two between MINIMUM_CAPACITY
- * and MAXIMUM_CAPACITY, inclusive, that is greater than
- * (3 * expectedMaxSize)/2, if such a number exists. Otherwise
- * returns MAXIMUM_CAPACITY. If (3 * expectedMaxSize)/2 is negative, it
- * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
- */
- private int capacity(int expectedMaxSize) {
- // Compute min capacity for expectedMaxSize given a load factor of 2/3
- int minCapacity = (3 * expectedMaxSize)/2;
-
- // Compute the appropriate capacity
- int result;
- if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
- result = MAXIMUM_CAPACITY;
- } else {
- result = MINIMUM_CAPACITY;
- while (result < minCapacity)
- result <<= 1;
- }
- return result;
- }
-
- /**
- * Initialize object to be an empty map with the specified initial
- * capacity, which is assumed to be a power of two between
- * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
- */
- private void init(int initCapacity) {
- // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
- // assert initCapacity >= MINIMUM_CAPACITY;
- // assert initCapacity <= MAXIMUM_CAPACITY;
-
- threshold = (initCapacity * 2)/3;
- table = new Object[2 * initCapacity];
- }
-
- /**
- * Constructs a new identity hash map containing the keys-value mappings
- * in the specified map.
- *
- * @param m the map whose mappings are to be placed into this map.
- * @throws NullPointerException if the specified map is null.
- */
- public IdentityHashMap(Map<? extends K, ? extends V> m) {
- // Allow for a bit of growth
- this((int) ((1 + m.size()) * 1.1));
- putAll(m);
- }
-
- /**
- * Returns the number of key-value mappings in this identity hash map.
- *
- * @return the number of key-value mappings in this map.
- */
- public int size() {
- return size;
- }
-
- /**
- * Returns <tt>true</tt> if this identity hash map contains no key-value
- * mappings.
- *
- * @return <tt>true</tt> if this identity hash map contains no key-value
- * mappings.
- */
- public boolean isEmpty() {
- return size == 0;
- }
-
- /**
- * Return index for Object x.
- */
- private static int hash(Object x, int length) {
- int h = System.identityHashCode(x);
- // Multiply by -127, and left-shift to use least bit as part of hash
- return ((h << 1) - (h << 8)) & (length - 1);
- }
-
- /**
- * Circularly traverse table of size len.
- **/
- private static int nextKeyIndex(int i, int len) {
- return (i + 2 < len ? i + 2 : 0);
- }
-
- /**
- * Returns the value to which the specified key is mapped in this identity
- * hash map, or <tt>null</tt> if the map contains no mapping for
- * this key. A return value of <tt>null</tt> does not <i>necessarily</i>
- * indicate that the map contains no mapping for the key; it is also
- * possible that the map explicitly maps the key to <tt>null</tt>. The
- * <tt>containsKey</tt> method may be used to distinguish these two
- * cases.
- *
- * @param key the key whose associated value is to be returned.
- * @return the value to which this map maps the specified key, or
- * <tt>null</tt> if the map contains no mapping for this key.
- * @see #put(Object, Object)
- */
- public V get(Object key) {
- Object k = maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
- while (true) {
- Object item = tab[i];
- if (item == k)
- return (V) tab[i + 1];
- if (item == null)
- return null;
- i = nextKeyIndex(i, len);
- }
- }
-
- /**
- * Tests whether the specified object reference is a key in this identity
- * hash map.
- *
- * @param key possible key.
- * @return <code>true</code> if the specified object reference is a key
- * in this map.
- * @see #containsValue(Object)
- */
- public boolean containsKey(Object key) {
- Object k = maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
- while (true) {
- Object item = tab[i];
- if (item == k)
- return true;
- if (item == null)
- return false;
- i = nextKeyIndex(i, len);
- }
- }
-
- /**
- * Tests whether the specified object reference is a value in this identity
- * hash map.
- *
- * @param value value whose presence in this map is to be tested.
- * @return <tt>true</tt> if this map maps one or more keys to the
- * specified object reference.
- * @see #containsKey(Object)
- */
- public boolean containsValue(Object value) {
- Object[] tab = table;
- for (int i = 1; i < tab.length; i+= 2)
- if (tab[i] == value)
- return true;
-
- return false;
- }
-
- /**
- * Tests if the specified key-value mapping is in the map.
- *
- * @param key possible key.
- * @param value possible value.
- * @return <code>true</code> if and only if the specified key-value
- * mapping is in map.
- */
- private boolean containsMapping(Object key, Object value) {
- Object k = maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
- while (true) {
- Object item = tab[i];
- if (item == k)
- return tab[i + 1] == value;
- if (item == null)
- return false;
- i = nextKeyIndex(i, len);
- }
- }
-
- /**
- * Associates the specified value with the specified key in this identity
- * hash map. If the map previously contained a mapping for this key, the
- * old value is replaced.
- *
- * @param key the key with which the specified value is to be associated.
- * @param value the value to be associated with the specified key.
- * @return the previous value associated with <tt>key</tt>, or
- * <tt>null</tt> if there was no mapping for <tt>key</tt>. (A
- * <tt>null</tt> return can also indicate that the map previously
- * associated <tt>null</tt> with the specified key.)
- * @see Object#equals(Object)
- * @see #get(Object)
- * @see #containsKey(Object)
- */
- public V put(K key, V value) {
- Object k = maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
-
- Object item;
- while ( (item = tab[i]) != null) {
- if (item == k) {
- V oldValue = (V) tab[i + 1];
- tab[i + 1] = value;
- return oldValue;
- }
- i = nextKeyIndex(i, len);
- }
-
- modCount++;
- tab[i] = k;
- tab[i + 1] = value;
- if (++size >= threshold)
- resize(len); // len == 2 * current capacity.
- return null;
- }
-
- /**
- * Resize the table to hold given capacity.
- *
- * @param newCapacity the new capacity, must be a power of two.
- */
- private void resize(int newCapacity) {
- // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
- int newLength = newCapacity * 2;
-
- Object[] oldTable = table;
- int oldLength = oldTable.length;
- if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further
- if (threshold == MAXIMUM_CAPACITY-1)
- throw new IllegalStateException("Capacity exhausted.");
- threshold = MAXIMUM_CAPACITY-1; // Gigantic map!
- return;
- }
- if (oldLength >= newLength)
- return;
-
- Object[] newTable = new Object[newLength];
- threshold = newLength / 3;
-
- for (int j = 0; j < oldLength; j += 2) {
- Object key = oldTable[j];
- if (key != null) {
- Object value = oldTable[j+1];
- oldTable[j] = null;
- oldTable[j+1] = null;
- int i = hash(key, newLength);
- while (newTable[i] != null)
- i = nextKeyIndex(i, newLength);
- newTable[i] = key;
- newTable[i + 1] = value;
- }
- }
- table = newTable;
- }
-
- /**
- * Copies all of the mappings from the specified map to this map
- * These mappings will replace any mappings that
- * this map had for any of the keys currently in the specified map.<p>
- *
- * @param t mappings to be stored in this map.
- * @throws NullPointerException if the specified map is null.
- */
- public void putAll(Map<? extends K, ? extends V> t) {
- int n = t.size();
- if (n == 0)
- return;
- if (n > threshold) // conservatively pre-expand
- resize(capacity(n));
-
- for (Entry<? extends K, ? extends V> e : t.entrySet())
- put(e.getKey(), e.getValue());
- }
-
- /**
- * Removes the mapping for this key from this map if present.
- *
- * @param key key whose mapping is to be removed from the map.
- * @return previous value associated with specified key, or <tt>null</tt>
- * if there was no entry for key. (A <tt>null</tt> return can
- * also indicate that the map previously associated <tt>null</tt>
- * with the specified key.)
- */
- public V remove(Object key) {
- Object k = maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
-
- while (true) {
- Object item = tab[i];
- if (item == k) {
- modCount++;
- size--;
- V oldValue = (V) tab[i + 1];
- tab[i + 1] = null;
- tab[i] = null;
- closeDeletion(i);
- return oldValue;
- }
- if (item == null)
- return null;
- i = nextKeyIndex(i, len);
- }
-
- }
-
- /**
- * Removes the specified key-value mapping from the map if it is present.
- *
- * @param key possible key.
- * @param value possible value.
- * @return <code>true</code> if and only if the specified key-value
- * mapping was in map.
- */
- private boolean removeMapping(Object key, Object value) {
- Object k = maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
-
- while (true) {
- Object item = tab[i];
- if (item == k) {
- if (tab[i + 1] != value)
- return false;
- modCount++;
- size--;
- tab[i] = null;
- tab[i + 1] = null;
- closeDeletion(i);
- return true;
- }
- if (item == null)
- return false;
- i = nextKeyIndex(i, len);
- }
- }
-
- /**
- * Rehash all possibly-colliding entries following a
- * deletion. This preserves the linear-probe
- * collision properties required by get, put, etc.
- *
- * @param d the index of a newly empty deleted slot
- */
- private void closeDeletion(int d) {
- // Adapted from Knuth Section 6.4 Algorithm R
- Object[] tab = table;
- int len = tab.length;
-
- // Look for items to swap into newly vacated slot
- // starting at index immediately following deletion,
- // and continuing until a null slot is seen, indicating
- // the end of a run of possibly-colliding keys.
- Object item;
- for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
- i = nextKeyIndex(i, len) ) {
- // The following test triggers if the item at slot i (which
- // hashes to be at slot r) should take the spot vacated by d.
- // If so, we swap it in, and then continue with d now at the
- // newly vacated i. This process will terminate when we hit
- // the null slot at the end of this run.
- // The test is messy because we are using a circular table.
- int r = hash(item, len);
- if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
- tab[d] = item;
- tab[d + 1] = tab[i + 1];
- tab[i] = null;
- tab[i + 1] = null;
- d = i;
- }
- }
- }
-
- /**
- * Removes all mappings from this map.
- */
- public void clear() {
- modCount++;
- Object[] tab = table;
- for (int i = 0; i < tab.length; i++)
- tab[i] = null;
- size = 0;
- }
-
- /**
- * Compares the specified object with this map for equality. Returns
- * <tt>true</tt> if the given object is also a map and the two maps
- * represent identical object-reference mappings. More formally, this
- * map is equal to another map <tt>m</tt> if and only if
- * map <tt>this.entrySet().equals(m.entrySet())</tt>.
- *
- * <p><b>Owing to the reference-equality-based semantics of this map it is
- * possible that the symmetry and transitivity requirements of the
- * <tt>Object.equals</tt> contract may be violated if this map is compared
- * to a normal map. However, the <tt>Object.equals</tt> contract is
- * guaranteed to hold among <tt>IdentityHashMap</tt> instances.</b>
- *
- * @param o object to be compared for equality with this map.
- * @return <tt>true</tt> if the specified object is equal to this map.
- * @see Object#equals(Object)
- */
- public boolean equals(Object o) {
- if (o == this) {
- return true;
- } else if (o instanceof IdentityHashMap) {
- IdentityHashMap m = (IdentityHashMap) o;
- if (m.size() != size)
- return false;
-
- Object[] tab = m.table;
- for (int i = 0; i < tab.length; i+=2) {
- Object k = tab[i];
- if (k != null && !containsMapping(k, tab[i + 1]))
- return false;
- }
- return true;
- } else if (o instanceof Map) {
- Map m = (Map)o;
- return entrySet().equals(m.entrySet());
- } else {
- return false; // o is not a Map
- }
- }
-
- /**
- * Returns the hash code value for this map. The hash code of a map
- * is defined to be the sum of the hashcode of each entry in the map's
- * entrySet view. This ensures that <tt>t1.equals(t2)</tt> implies
- * that <tt>t1.hashCode()==t2.hashCode()</tt> for any two
- * <tt>IdentityHashMap</tt> instances <tt>t1</tt> and <tt>t2</tt>, as
- * required by the general contract of {@link Object#hashCode()}.
- *
- * <p><b>Owing to the reference-equality-based semantics of the
- * <tt>Map.Entry</tt> instances in the set returned by this map's
- * <tt>entrySet</tt> method, it is possible that the contractual
- * requirement of <tt>Object.hashCode</tt> mentioned in the previous
- * paragraph will be violated if one of the two objects being compared is
- * an <tt>IdentityHashMap</tt> instance and the other is a normal map.</b>
- *
- * @return the hash code value for this map.
- * @see Object#hashCode()
- * @see Object#equals(Object)
- * @see #equals(Object)
- */
- public int hashCode() {
- int result = 0;
- Object[] tab = table;
- for (int i = 0; i < tab.length; i +=2) {
- Object key = tab[i];
- if (key != null) {
- Object k = unmaskNull(key);
- result += System.identityHashCode(k) ^
- System.identityHashCode(tab[i + 1]);
- }
- }
- return result;
- }
-
- /**
- * Returns a shallow copy of this identity hash map: the keys and values
- * themselves are not cloned.
- *
- * @return a shallow copy of this map.
- */
- public Object clone() {
- try {
- IdentityHashMap<K,V> t = (IdentityHashMap<K,V>) super.clone();
- t.entrySet = null;
- t.table = (Object[])table.clone();
- return t;
- } catch (CloneNotSupportedException e) {
- throw new InternalError();
- }
- }
-
- private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
- int index = (size != 0 ? 0 : table.length); // current slot.
- int expectedModCount = modCount; // to support fast-fail
- int lastReturnedIndex = -1; // to allow remove()
- boolean indexValid; // To avoid unnecessary next computation
- Object[] traversalTable = table; // reference to main table or copy
-
- public boolean hasNext() {
- Object[] tab = traversalTable;
- for (int i = index; i < tab.length; i+=2) {
- Object key = tab[i];
- if (key != null) {
- index = i;
- return indexValid = true;
- }
- }
- index = tab.length;
- return false;
- }
-
- protected int nextIndex() {
- if (modCount != expectedModCount)
- throw new ConcurrentModificationException();
- if (!indexValid && !hasNext())
- throw new NoSuchElementException();
-
- indexValid = false;
- lastReturnedIndex = index;
- index += 2;
- return lastReturnedIndex;
- }
-
- public void remove() {
- if (lastReturnedIndex == -1)
- throw new IllegalStateException();
- if (modCount != expectedModCount)
- throw new ConcurrentModificationException();
-
- expectedModCount = ++modCount;
- int deletedSlot = lastReturnedIndex;
- lastReturnedIndex = -1;
- size--;
- // back up index to revisit new contents after deletion
- index = deletedSlot;
- indexValid = false;
-
- // Removal code proceeds as in closeDeletion except that
- // it must catch the rare case where an element already
- // seen is swapped into a vacant slot that will be later
- // traversed by this iterator. We cannot allow future
- // next() calls to return it again. The likelihood of
- // this occurring under 2/3 load factor is very slim, but
- // when it does happen, we must make a copy of the rest of
- // the table to use for the rest of the traversal. Since
- // this can only happen when we are near the end of the table,
- // even in these rare cases, this is not very expensive in
- // time or space.
-
- Object[] tab = traversalTable;
- int len = tab.length;
-
- int d = deletedSlot;
- K key = (K) tab[d];
- tab[d] = null; // vacate the slot
- tab[d + 1] = null;
-
- // If traversing a copy, remove in real table.
- // We can skip gap-closure on copy.
- if (tab != IdentityHashMap.this.table) {
- IdentityHashMap.this.remove(key);
- expectedModCount = modCount;
- return;
- }
-
- Object item;
- for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
- i = nextKeyIndex(i, len)) {
- int r = hash(item, len);
- // See closeDeletion for explanation of this conditional
- if ((i < r && (r <= d || d <= i)) ||
- (r <= d && d <= i)) {
-
- // If we are about to swap an already-seen element
- // into a slot that may later be returned by next(),
- // then clone the rest of table for use in future
- // next() calls. It is OK that our copy will have
- // a gap in the "wrong" place, since it will never
- // be used for searching anyway.
-
- if (i < deletedSlot && d >= deletedSlot &&
- traversalTable == IdentityHashMap.this.table) {
- int remaining = len - deletedSlot;
- Object[] newTable = new Object[remaining];
- System.arraycopy(tab, deletedSlot,
- newTable, 0, remaining);
- traversalTable = newTable;
- index = 0;
- }
-
- tab[d] = item;
- tab[d + 1] = tab[i + 1];
- tab[i] = null;
- tab[i + 1] = null;
- d = i;
- }
- }
- }
- }
-
- private class KeyIterator extends IdentityHashMapIterator<K> {
- public K next() {
- return (K) unmaskNull(traversalTable[nextIndex()]);
- }
- }
-
- private class ValueIterator extends IdentityHashMapIterator<V> {
- public V next() {
- return (V) traversalTable[nextIndex() + 1];
- }
- }
-
- /**
- * Since we don't use Entry objects, we use the Iterator
- * itself as an entry.
- */
- private class EntryIterator
- extends IdentityHashMapIterator<Map.Entry<K,V>>
- implements Map.Entry<K,V>
- {
- public Map.Entry<K,V> next() {
- nextIndex();
- return this;
- }
-
- public K getKey() {
- // Provide a better exception than out of bounds index
- if (lastReturnedIndex < 0)
- throw new IllegalStateException("Entry was removed");
-
- return (K) unmaskNull(traversalTable[lastReturnedIndex]);
- }
-
- public V getValue() {
- // Provide a better exception than out of bounds index
- if (lastReturnedIndex < 0)
- throw new IllegalStateException("Entry was removed");
-
- return (V) traversalTable[lastReturnedIndex+1];
- }
-
- public V setValue(V value) {
- // It would be mean-spirited to proceed here if remove() called
- if (lastReturnedIndex < 0)
- throw new IllegalStateException("Entry was removed");
- V oldValue = (V) traversalTable[lastReturnedIndex+1];
- traversalTable[lastReturnedIndex+1] = value;
- // if shadowing, force into main table
- if (traversalTable != IdentityHashMap.this.table)
- put((K) traversalTable[lastReturnedIndex], value);
- return oldValue;
- }
-
- public boolean equals(Object o) {
- if (lastReturnedIndex < 0)
- return super.equals(o);
-
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry e = (Map.Entry)o;
- return e.getKey() == getKey() &&
- e.getValue() == getValue();
- }
-
- public int hashCode() {
- if (lastReturnedIndex < 0)
- return super.hashCode();
-
- return System.identityHashCode(getKey()) ^
- System.identityHashCode(getValue());
- }
-
- public String toString() {
- if (lastReturnedIndex < 0)
- return super.toString();
-
- return getKey() + "=" + getValue();
- }
- }
-
- // Views
-
- /**
- * This field is initialized to contain an instance of the entry set
- * view the first time this view is requested. The view is stateless,
- * so there's no reason to create more than one.
- */
-
- private transient Set<Map.Entry<K,V>> entrySet = null;
-
- /**
- * Returns an identity-based set view of the keys contained in this map.
- * The set is backed by the map, so changes to the map are reflected in
- * the set, and vice-versa. If the map is modified while an iteration
- * over the set is in progress, the results of the iteration are
- * undefined. The set supports element removal, which removes the
- * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
- * <tt>Set.remove</tt>, <tt>removeAll</tt> <tt>retainAll</tt>, and
- * <tt>clear</tt> methods. It does not support the <tt>add</tt> or
- * <tt>addAll</tt> methods.
- *
- * <p><b>While the object returned by this method implements the
- * <tt>Set</tt> interface, it does <i>not</i> obey <tt>Set's</tt> general
- * contract. Like its backing map, the set returned by this method
- * defines element equality as reference-equality rather than
- * object-equality. This affects the behavior of its <tt>contains</tt>,
- * <tt>remove</tt>, <tt>containsAll</tt>, <tt>equals</tt>, and
- * <tt>hashCode</tt> methods.</b>
- *
- * <p>The <tt>equals</tt> method of the returned set returns <tt>true</tt>
- * only if the specified object is a set containing exactly the same
- * object references as the returned set. The symmetry and transitivity
- * requirements of the <tt>Object.equals</tt> contract may be violated if
- * the set returned by this method is compared to a normal set. However,
- * the <tt>Object.equals</tt> contract is guaranteed to hold among sets
- * returned by this method.</b>
- *
- * <p>The <tt>hashCode</tt> method of the returned set returns the sum of
- * the <i>identity hashcodes</i> of the elements in the set, rather than
- * the sum of their hashcodes. This is mandated by the change in the
- * semantics of the <tt>equals</tt> method, in order to enforce the
- * general contract of the <tt>Object.hashCode</tt> method among sets
- * returned by this method.
- *
- * @return an identity-based set view of the keys contained in this map.
- * @see Object#equals(Object)
- * @see System#identityHashCode(Object)
- */
- public Set<K> keySet() {
- Set<K> ks = keySet;
- if (ks != null)
- return ks;
- else
- return keySet = new KeySet();
- }
-
- private class KeySet extends AbstractSet<K> {
- public Iterator<K> iterator() {
- return new KeyIterator();
- }
- public int size() {
- return size;
- }
- public boolean contains(Object o) {
- return containsKey(o);
- }
- public boolean remove(Object o) {
- int oldSize = size;
- IdentityHashMap.this.remove(o);
- return size != oldSize;
- }
- /*
- * Must revert from AbstractSet's impl to AbstractCollection's, as
- * the former contains an optimization that results in incorrect
- * behavior when c is a smaller "normal" (non-identity-based) Set.
- */
- public boolean removeAll(Collection<?> c) {
- boolean modified = false;
- for (Iterator i = iterator(); i.hasNext(); ) {
- if (c.contains(i.next())) {
- i.remove();
- modified = true;
- }
- }
- return modified;
- }
- public void clear() {
- IdentityHashMap.this.clear();
- }
- public int hashCode() {
- int result = 0;
- for (K key : this)
- result += System.identityHashCode(key);
- return result;
- }
- }
-
- /**
- * <p>Returns a collection view of the values contained in this map. The
- * collection is backed by the map, so changes to the map are reflected in
- * the collection, and vice-versa. If the map is modified while an
- * iteration over the collection is in progress, the results of the
- * iteration are undefined. The collection supports element removal,
- * which removes the corresponding mapping from the map, via the
- * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
- * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt> methods.
- * It does not support the <tt>add</tt> or <tt>addAll</tt> methods.
- *
- * <p><b>While the object returned by this method implements the
- * <tt>Collection</tt> interface, it does <i>not</i> obey
- * <tt>Collection's</tt> general contract. Like its backing map,
- * the collection returned by this method defines element equality as
- * reference-equality rather than object-equality. This affects the
- * behavior of its <tt>contains</tt>, <tt>remove</tt> and
- * <tt>containsAll</tt> methods.</b>
- *
- * @return a collection view of the values contained in this map.
- */
- public Collection<V> values() {
- Collection<V> vs = values;
- if (vs != null)
- return vs;
- else
- return values = new Values();
- }
-
- private class Values extends AbstractCollection<V> {
- public Iterator<V> iterator() {
- return new ValueIterator();
- }
- public int size() {
- return size;
- }
- public boolean contains(Object o) {
- return containsValue(o);
- }
- public boolean remove(Object o) {
- for (Iterator i = iterator(); i.hasNext(); ) {
- if (i.next() == o) {
- i.remove();
- return true;
- }
- }
- return false;
- }
- public void clear() {
- IdentityHashMap.this.clear();
- }
- }
-
- /**
- * Returns a set view of the mappings contained in this map. Each element
- * in the returned set is a reference-equality-based <tt>Map.Entry</tt>.
- * The set is backed by the map, so changes to the map are reflected in
- * the set, and vice-versa. If the map is modified while an iteration
- * over the set is in progress, the results of the iteration are
- * undefined. The set supports element removal, which removes the
- * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
- * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
- * <tt>clear</tt> methods. It does not support the <tt>add</tt> or
- * <tt>addAll</tt> methods.
- *
- * <p>Like the backing map, the <tt>Map.Entry</tt> objects in the set
- * returned by this method define key and value equality as
- * reference-equality rather than object-equality. This affects the
- * behavior of the <tt>equals</tt> and <tt>hashCode</tt> methods of these
- * <tt>Map.Entry</tt> objects. A reference-equality based <tt>Map.Entry
- * e</tt> is equal to an object <tt>o</tt> if and only if <tt>o</tt> is a
- * <tt>Map.Entry</tt> and <tt>e.getKey()==o.getKey() &&
- * e.getValue()==o.getValue()</tt>. To accommodate these equals
- * semantics, the <tt>hashCode</tt> method returns
- * <tt>System.identityHashCode(e.getKey()) ^
- * System.identityHashCode(e.getValue())</tt>.
- *
- * <p><b>Owing to the reference-equality-based semantics of the
- * <tt>Map.Entry</tt> instances in the set returned by this method,
- * it is possible that the symmetry and transitivity requirements of
- * the {@link Object#equals(Object)} contract may be violated if any of
- * the entries in the set is compared to a normal map entry, or if
- * the set returned by this method is compared to a set of normal map
- * entries (such as would be returned by a call to this method on a normal
- * map). However, the <tt>Object.equals</tt> contract is guaranteed to
- * hold among identity-based map entries, and among sets of such entries.
- * </b>
- *
- * @return a set view of the identity-mappings contained in this map.
- */
- public Set<Map.Entry<K,V>> entrySet() {
- Set<Map.Entry<K,V>> es = entrySet;
- if (es != null)
- return es;
- else
- return entrySet = new EntrySet();
- }
-
- private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
- public Iterator<Map.Entry<K,V>> iterator() {
- return new EntryIterator();
- }
- public boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry entry = (Map.Entry)o;
- return containsMapping(entry.getKey(), entry.getValue());
- }
- public boolean remove(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry entry = (Map.Entry)o;
- return removeMapping(entry.getKey(), entry.getValue());
- }
- public int size() {
- return size;
- }
- public void clear() {
- IdentityHashMap.this.clear();
- }
- /*
- * Must revert from AbstractSet's impl to AbstractCollection's, as
- * the former contains an optimization that results in incorrect
- * behavior when c is a smaller "normal" (non-identity-based) Set.
- */
- public boolean removeAll(Collection<?> c) {
- boolean modified = false;
- for (Iterator i = iterator(); i.hasNext(); ) {
- if(c.contains(i.next())) {
- i.remove();
- modified = true;
- }
- }
- return modified;
- }
-
- public Object[] toArray() {
- List<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
- for (Map.Entry<K,V> e : this)
- c.add(new AbstractMap.SimpleEntry<K,V>(e));
- return c.toArray();
- }
- public <T> T[] toArray(T[] a) {
- return (T[])toArray(); // !!!!
- }
- }
-
-
- private static final long serialVersionUID = 8188218128353913216L;
-
- /**
- * Save the state of the <tt>IdentityHashMap</tt> instance to a stream
- * (i.e., serialize it).
- *
- * @serialData The <i>size</i> of the HashMap (the number of key-value
- * mappings) (<tt>int</tt>), followed by the key (Object) and
- * value (Object) for each key-value mapping represented by the
- * IdentityHashMap. The key-value mappings are emitted in no
- * particular order.
- */
- private void writeObject(java.io.ObjectOutputStream s)
- throws java.io.IOException {
- // Write out and any hidden stuff
- s.defaultWriteObject();
-
- // Write out size (number of Mappings)
- s.writeInt(size);
-
- // Write out keys and values (alternating)
- Object[] tab = table;
- for (int i = 0; i < tab.length; i += 2) {
- Object key = tab[i];
- if (key != null) {
- s.writeObject(unmaskNull(key));
- s.writeObject(tab[i + 1]);
- }
- }
- }
-
- /**
- * Reconstitute the <tt>IdentityHashMap</tt> instance from a stream (i.e.,
- * deserialize it).
- */
- private void readObject(java.io.ObjectInputStream s)
- throws java.io.IOException, ClassNotFoundException {
- // Read in any hidden stuff
- s.defaultReadObject();
-
- // Read in size (number of Mappings)
- int size = s.readInt();
-
- // Allow for 33% growth (i.e., capacity is >= 2* size()).
- init(capacity((size*4)/3));
-
- // Read the keys and values, and put the mappings in the table
- for (int i=0; i<size; i++) {
- K key = (K) s.readObject();
- V value = (V) s.readObject();
- putForCreate(key, value);
- }
- }
-
- /**
- * The put method for readObject. It does not resize the table,
- * update modcount, etc.
- */
- private void putForCreate(K key, V value)
- throws IOException
- {
- K k = (K)maskNull(key);
- Object[] tab = table;
- int len = tab.length;
- int i = hash(k, len);
-
- Object item;
- while ( (item = tab[i]) != null) {
- if (item == k)
- throw new java.io.StreamCorruptedException();
- i = nextKeyIndex(i, len);
- }
- tab[i] = k;
- tab[i + 1] = value;
- }
- }