- /*
- * @(#)Arrays.java 1.37 00/02/02
- *
- * Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved.
- *
- * This software is the proprietary information of Sun Microsystems, Inc.
- * Use is subject to license terms.
- *
- */
-
- package java.util;
-
- /**
- * This class contains various methods for manipulating arrays (such as
- * sorting and searching). It also contains a static factory that allows
- * arrays to be viewed as lists.<p>
- *
- * The documentation for the sorting and searching methods contained in this
- * class includes briefs description of the <i>implementations</i>. Such
- * descriptions should be regarded as <i>implementation notes</i>, rather than
- * parts of the <i>specification</i>. Implementors should feel free to
- * substitute other algorithms, so long as the specification itself is adhered
- * to. (For example, the algorithm used by <tt>sort(Object[])</tt> does not
- * have to be a mergesort, but it does have to be <i>stable</i>.)
- *
- * @author Josh Bloch
- * @version 1.37, 02/02/00
- * @see Comparable
- * @see Comparator
- * @since 1.2
- */
-
- public class Arrays {
- // Suppresses default constructor, ensuring non-instantiability.
- private Arrays() {
- }
-
- // Sorting
-
- /**
- * Sorts the specified array of longs into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(long[] a) {
- sort1(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of longs into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)
- *
- * <p>The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(long[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort1(a, fromIndex, toIndex-fromIndex);
- }
-
- /**
- * Sorts the specified array of ints into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(int[] a) {
- sort1(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of ints into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
- *
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(int[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort1(a, fromIndex, toIndex-fromIndex);
- }
-
- /**
- * Sorts the specified array of shorts into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(short[] a) {
- sort1(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of shorts into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
- *
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(short[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort1(a, fromIndex, toIndex-fromIndex);
- }
-
- /**
- * Sorts the specified array of chars into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(char[] a) {
- sort1(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of chars into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
- *
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(char[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort1(a, fromIndex, toIndex-fromIndex);
- }
-
- /**
- * Sorts the specified array of bytes into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(byte[] a) {
- sort1(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of bytes into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
- *
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(byte[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort1(a, fromIndex, toIndex-fromIndex);
- }
-
- /**
- * Sorts the specified array of doubles into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(double[] a) {
- sort2(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of doubles into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
- *
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(double[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort2(a, fromIndex, toIndex);
- }
-
- /**
- * Sorts the specified array of floats into ascending numerical order.
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- */
- public static void sort(float[] a) {
- sort2(a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of floats into
- * ascending numerical order. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
- *
- * The sorting algorithm is a tuned quicksort, adapted from Jon
- * L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
- * Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
- * 1993). This algorithm offers n*log(n) performance on many data sets
- * that cause other quicksorts to degrade to quadratic performance.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void sort(float[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- sort2(a, fromIndex, toIndex);
- }
-
- private static void sort2(double a[], int fromIndex, int toIndex) {
- final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d);
- /*
- * The sort is done in three phases to avoid the expense of using
- * NaN and -0.0 aware comparisons during the main sort.
- */
-
- /*
- * Preprocessing phase: Move any NaN's to end of array, count the
- * number of -0.0's, and turn them into 0.0's.
- */
- int numNegZeros = 0;
- int i = fromIndex, n = toIndex;
- while(i < n) {
- if (a[i] != a[i]) {
- a[i] = a[--n];
- a[n] = Double.NaN;
- } else {
- if (a[i]==0 && Double.doubleToLongBits(a[i])==NEG_ZERO_BITS) {
- a[i] = 0.0d;
- numNegZeros++;
- }
- i++;
- }
- }
-
- // Main sort phase: quicksort everything but the NaN's
- sort1(a, fromIndex, n-fromIndex);
-
- // Postprocessing phase: change 0.0's to -0.0's as required
- if (numNegZeros != 0) {
- int j = binarySearch(a, 0.0d, fromIndex, n-1); // posn of ANY zero
- do {
- j--;
- } while (j>=0 && a[j]==0.0d);
-
- // j is now one less than the index of the FIRST zero
- for (int k=0; k<numNegZeros; k++)
- a[++j] = -0.0d;
- }
- }
-
-
- private static void sort2(float a[], int fromIndex, int toIndex) {
- final int NEG_ZERO_BITS = Float.floatToIntBits(-0.0f);
- /*
- * The sort is done in three phases to avoid the expense of using
- * NaN and -0.0 aware comparisons during the main sort.
- */
-
- /*
- * Preprocessing phase: Move any NaN's to end of array, count the
- * number of -0.0's, and turn them into 0.0's.
- */
- int numNegZeros = 0;
- int i = fromIndex, n = toIndex;
- while(i < n) {
- if (a[i] != a[i]) {
- a[i] = a[--n];
- a[n] = Float.NaN;
- } else {
- if (a[i]==0 && Float.floatToIntBits(a[i])==NEG_ZERO_BITS) {
- a[i] = 0.0f;
- numNegZeros++;
- }
- i++;
- }
- }
-
- // Main sort phase: quicksort everything but the NaN's
- sort1(a, fromIndex, n-fromIndex);
-
- // Postprocessing phase: change 0.0's to -0.0's as required
- if (numNegZeros != 0) {
- int j = binarySearch(a, 0.0f, fromIndex, n-1); // posn of ANY zero
- do {
- j--;
- } while (j>=0 && a[j]==0.0f);
-
- // j is now one less than the index of the FIRST zero
- for (int k=0; k<numNegZeros; k++)
- a[++j] = -0.0f;
- }
- }
-
-
- /*
- * The code for each of the seven primitive types is largely identical.
- * C'est la vie.
- */
-
- /**
- * Sorts the specified sub-array of longs into ascending order.
- */
- private static void sort1(long x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- long v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(long x[], int a, int b) {
- long t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(long x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed longs.
- */
- private static int med3(long x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
- /**
- * Sorts the specified sub-array of integers into ascending order.
- */
- private static void sort1(int x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- int v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(int x[], int a, int b) {
- int t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(int x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed integers.
- */
- private static int med3(int x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
- /**
- * Sorts the specified sub-array of shorts into ascending order.
- */
- private static void sort1(short x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- short v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(short x[], int a, int b) {
- short t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(short x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed shorts.
- */
- private static int med3(short x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
-
- /**
- * Sorts the specified sub-array of chars into ascending order.
- */
- private static void sort1(char x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- char v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(char x[], int a, int b) {
- char t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(char x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed chars.
- */
- private static int med3(char x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
-
- /**
- * Sorts the specified sub-array of bytes into ascending order.
- */
- private static void sort1(byte x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- byte v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(byte x[], int a, int b) {
- byte t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(byte x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed bytes.
- */
- private static int med3(byte x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
-
- /**
- * Sorts the specified sub-array of doubles into ascending order.
- */
- private static void sort1(double x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- double v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(double x[], int a, int b) {
- double t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(double x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed doubles.
- */
- private static int med3(double x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
-
- /**
- * Sorts the specified sub-array of floats into ascending order.
- */
- private static void sort1(float x[], int off, int len) {
- // Insertion sort on smallest arrays
- if (len < 7) {
- for (int i=off; i<len+off; i++)
- for (int j=i; j>off && x[j-1]>x[j]; j--)
- swap(x, j, j-1);
- return;
- }
-
- // Choose a partition element, v
- int m = off + len2; // Small arrays, middle element
- if (len > 7) {
- int l = off;
- int n = off + len - 1;
- if (len > 40) { // Big arrays, pseudomedian of 9
- int s = len8;
- l = med3(x, l, l+s, l+2*s);
- m = med3(x, m-s, m, m+s);
- n = med3(x, n-2*s, n-s, n);
- }
- m = med3(x, l, m, n); // Mid-size, med of 3
- }
- float v = x[m];
-
- // Establish Invariant: v* (<v)* (>v)* v*
- int a = off, b = a, c = off + len - 1, d = c;
- while(true) {
- while (b <= c && x[b] <= v) {
- if (x[b] == v)
- swap(x, a++, b);
- b++;
- }
- while (c >= b && x[c] >= v) {
- if (x[c] == v)
- swap(x, c, d--);
- c--;
- }
- if (b > c)
- break;
- swap(x, b++, c--);
- }
-
- // Swap partition elements back to middle
- int s, n = off + len;
- s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
- s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
-
- // Recursively sort non-partition-elements
- if ((s = b-a) > 1)
- sort1(x, off, s);
- if ((s = d-c) > 1)
- sort1(x, n-s, s);
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(float x[], int a, int b) {
- float t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
- */
- private static void vecswap(float x[], int a, int b, int n) {
- for (int i=0; i<n; i++, a++, b++)
- swap(x, a, b);
- }
-
- /**
- * Returns the index of the median of the three indexed floats.
- */
- private static int med3(float x[], int a, int b, int c) {
- return (x[a] < x[b] ?
- (x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
- (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
- }
-
-
- /**
- * Sorts the specified array of objects into ascending order, according to
- * the <i>natural ordering</i> of its elements. All elements in the array
- * must implement the <tt>Comparable</tt> interface. Furthermore, all
- * elements in the array must be <i>mutually comparable</i> (that is,
- * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
- * for any elements <tt>e1</tt> and <tt>e2</tt> in the array).<p>
- *
- * This sort is guaranteed to be <i>stable</i>: equal elements will
- * not be reordered as a result of the sort.<p>
- *
- * The sorting algorithm is a modified mergesort (in which the merge is
- * omitted if the highest element in the low sublist is less than the
- * lowest element in the high sublist). This algorithm offers guaranteed
- * n*log(n) performance, and can approach linear performance on nearly
- * sorted lists.
- *
- * @param a the array to be sorted.
- * @throws ClassCastException if the array contains elements that are not
- * <i>mutually comparable</i> (for example, strings and integers).
- * @see Comparable
- */
- public static void sort(Object[] a) {
- Object aux[] = (Object[])a.clone();
- mergeSort(aux, a, 0, a.length);
- }
-
- /**
- * Sorts the specified range of the specified array of objects into
- * ascending order, according to the <i>natural ordering</i> of its
- * elements. The range to be sorted extends from index
- * <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
- * (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.) All
- * elements in this range must implement the <tt>Comparable</tt>
- * interface. Furthermore, all elements in this range must be <i>mutually
- * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
- * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
- * <tt>e2</tt> in the array).<p>
- *
- * This sort is guaranteed to be <i>stable</i>: equal elements will
- * not be reordered as a result of the sort.<p>
- *
- * The sorting algorithm is a modified mergesort (in which the merge is
- * omitted if the highest element in the low sublist is less than the
- * lowest element in the high sublist). This algorithm offers guaranteed
- * n*log(n) performance, and can approach linear performance on nearly
- * sorted lists.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- * @throws ClassCastException if the array contains elements that are
- * not <i>mutually comparable</i> (for example, strings and
- * integers).
- * @see Comparable
- */
- public static void sort(Object[] a, int fromIndex, int toIndex) {
- rangeCheck(a.length, fromIndex, toIndex);
- Object aux[] = (Object[])a.clone(); // Optimization opportunity
- mergeSort(aux, a, fromIndex, toIndex);
- }
-
- private static void mergeSort(Object src[], Object dest[],
- int low, int high) {
- int length = high - low;
-
- // Insertion sort on smallest arrays
- if (length < 7) {
- for (int i=low; i<high; i++)
- for (int j=i; j>low &&
- ((Comparable)dest[j-1]).compareTo((Comparable)dest[j])>0; j--)
- swap(dest, j, j-1);
- return;
- }
-
- // Recursively sort halves of dest into src
- int mid = (low + high)/2;
- mergeSort(dest, src, low, mid);
- mergeSort(dest, src, mid, high);
-
- // If list is already sorted, just copy from src to dest. This is an
- // optimization that results in faster sorts for nearly ordered lists.
- if (((Comparable)src[mid-1]).compareTo((Comparable)src[mid]) <= 0) {
- System.arraycopy(src, low, dest, low, length);
- return;
- }
-
- // Merge sorted halves (now in src) into dest
- for(int i = low, p = low, q = mid; i < high; i++) {
- if (q>=high || p<mid && ((Comparable)src[p]).compareTo(src[q])<=0)
- dest[i] = src[p++];
- else
- dest[i] = src[q++];
- }
- }
-
- /**
- * Swaps x[a] with x[b].
- */
- private static void swap(Object x[], int a, int b) {
- Object t = x[a];
- x[a] = x[b];
- x[b] = t;
- }
-
- /**
- * Sorts the specified array of objects according to the order induced by
- * the specified comparator. All elements in the array must be
- * <i>mutually comparable</i> by the specified comparator (that is,
- * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
- * for any elements <tt>e1</tt> and <tt>e2</tt> in the array).<p>
- *
- * This sort is guaranteed to be <i>stable</i>: equal elements will
- * not be reordered as a result of the sort.<p>
- *
- * The sorting algorithm is a modified mergesort (in which the merge is
- * omitted if the highest element in the low sublist is less than the
- * lowest element in the high sublist). This algorithm offers guaranteed
- * n*log(n) performance, and can approach linear performance on nearly
- * sorted lists.
- *
- * @param a the array to be sorted.
- * @param c the comparator to determine the order of the array. A
- * <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @throws ClassCastException if the array contains elements that are
- * not <i>mutually comparable</i> using the specified comparator.
- * @see Comparator
- */
- public static void sort(Object[] a, Comparator c) {
- Object aux[] = (Object[])a.clone();
- if (c==null)
- mergeSort(aux, a, 0, a.length);
- else
- mergeSort(aux, a, 0, a.length, c);
- }
-
- /**
- * Sorts the specified range of the specified array of objects according
- * to the order induced by the specified comparator. The range to be
- * sorted extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be sorted is empty.) All elements in the range must be
- * <i>mutually comparable</i> by the specified comparator (that is,
- * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
- * for any elements <tt>e1</tt> and <tt>e2</tt> in the range).<p>
- *
- * This sort is guaranteed to be <i>stable</i>: equal elements will
- * not be reordered as a result of the sort.<p>
- *
- * The sorting algorithm is a modified mergesort (in which the merge is
- * omitted if the highest element in the low sublist is less than the
- * lowest element in the high sublist). This algorithm offers guaranteed
- * n*log(n) performance, and can approach linear performance on nearly
- * sorted lists.
- *
- * @param a the array to be sorted.
- * @param fromIndex the index of the first element (inclusive) to be
- * sorted.
- * @param toIndex the index of the last element (exclusive) to be sorted.
- * @param c the comparator to determine the order of the array. A
- * <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @throws ClassCastException if the array contains elements that are not
- * <i>mutually comparable</i> using the specified comparator.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- * @see Comparator
- */
- public static void sort(Object[] a, int fromIndex, int toIndex,
- Comparator c) {
- rangeCheck(a.length, fromIndex, toIndex);
- Object aux[] = (Object[])a.clone();
- if (c==null)
- mergeSort(aux, a, fromIndex, toIndex);
- else
- mergeSort(aux, a, fromIndex, toIndex, c);
- }
-
- private static void mergeSort(Object src[], Object dest[],
- int low, int high, Comparator c) {
- int length = high - low;
-
- // Insertion sort on smallest arrays
- if (length < 7) {
- for (int i=low; i<high; i++)
- for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--)
- swap(dest, j, j-1);
- return;
- }
-
- // Recursively sort halves of dest into src
- int mid = (low + high)/2;
- mergeSort(dest, src, low, mid, c);
- mergeSort(dest, src, mid, high, c);
-
- // If list is already sorted, just copy from src to dest. This is an
- // optimization that results in faster sorts for nearly ordered lists.
- if (c.compare(src[mid-1], src[mid]) <= 0) {
- System.arraycopy(src, low, dest, low, length);
- return;
- }
-
- // Merge sorted halves (now in src) into dest
- for(int i = low, p = low, q = mid; i < high; i++) {
- if (q>=high || p<mid && c.compare(src[p], src[q]) <= 0)
- dest[i] = src[p++];
- else
- dest[i] = src[q++];
- }
- }
-
- /**
- * Check that fromIndex and toIndex are in range, and throw an
- * appropriate exception if they aren't.
- */
- private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
- if (fromIndex > toIndex)
- throw new IllegalArgumentException("fromIndex(" + fromIndex +
- ") > toIndex(" + toIndex+")");
- if (fromIndex < 0)
- throw new ArrayIndexOutOfBoundsException(fromIndex);
- if (toIndex > arrayLen)
- throw new ArrayIndexOutOfBoundsException(toIndex);
- }
-
- // Searching
-
- /**
- * Searches the specified array of longs for the specified value using the
- * binary search algorithm. The array <strong>must</strong> be sorted (as
- * by the <tt>sort</tt> method, above) prior to making this call. If it
- * is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(long[])
- */
- public static int binarySearch(long[] a, long key) {
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- long midVal = a[mid];
-
- if (midVal < key)
- low = mid + 1;
- else if (midVal > key)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
-
- /**
- * Searches the specified array of ints for the specified value using the
- * binary search algorithm. The array <strong>must</strong> be sorted (as
- * by the <tt>sort</tt> method, above) prior to making this call. If it
- * is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(int[])
- */
- public static int binarySearch(int[] a, int key) {
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- int midVal = a[mid];
-
- if (midVal < key)
- low = mid + 1;
- else if (midVal > key)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
- /**
- * Searches the specified array of shorts for the specified value using
- * the binary search algorithm. The array <strong>must</strong> be sorted
- * (as by the <tt>sort</tt> method, above) prior to making this call. If
- * it is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(short[])
- */
- public static int binarySearch(short[] a, short key) {
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- short midVal = a[mid];
-
- if (midVal < key)
- low = mid + 1;
- else if (midVal > key)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
- /**
- * Searches the specified array of chars for the specified value using the
- * binary search algorithm. The array <strong>must</strong> be sorted (as
- * by the <tt>sort</tt> method, above) prior to making this call. If it
- * is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(char[])
- */
- public static int binarySearch(char[] a, char key) {
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- char midVal = a[mid];
-
- if (midVal < key)
- low = mid + 1;
- else if (midVal > key)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
- /**
- * Searches the specified array of bytes for the specified value using the
- * binary search algorithm. The array <strong>must</strong> be sorted (as
- * by the <tt>sort</tt> method, above) prior to making this call. If it
- * is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(byte[])
- */
- public static int binarySearch(byte[] a, byte key) {
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- byte midVal = a[mid];
-
- if (midVal < key)
- low = mid + 1;
- else if (midVal > key)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
- /**
- * Searches the specified array of doubles for the specified value using
- * the binary search algorithm. The array <strong>must</strong> be sorted
- * (as by the <tt>sort</tt> method, above) prior to making this call. If
- * it is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(double[])
- */
- public static int binarySearch(double[] a, double key) {
- return binarySearch(a, key, 0, a.length-1);
- }
-
- private static int binarySearch(double[] a, double key, int low,int high) {
- while (low <= high) {
- int mid =(low + high)/2;
- double midVal = a[mid];
-
- int cmp;
- if (midVal < key) {
- cmp = -1; // Neither val is NaN, thisVal is smaller
- } else if (midVal > key) {
- cmp = 1; // Neither val is NaN, thisVal is larger
- } else {
- long midBits = Double.doubleToLongBits(midVal);
- long keyBits = Double.doubleToLongBits(key);
- cmp = (midBits == keyBits ? 0 : // Values are equal
- (midBits < keyBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
- 1)); // (0.0, -0.0) or (NaN, !NaN)
- }
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
- /**
- * Searches the specified array of floats for the specified value using
- * the binary search algorithm. The array <strong>must</strong> be sorted
- * (as by the <tt>sort</tt> method, above) prior to making this call. If
- * it is not sorted, the results are undefined. If the array contains
- * multiple elements with the specified value, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @see #sort(float[])
- */
- public static int binarySearch(float[] a, float key) {
- return binarySearch(a, key, 0, a.length-1);
- }
-
- private static int binarySearch(float[] a, float key, int low,int high) {
- while (low <= high) {
- int mid =(low + high)/2;
- float midVal = a[mid];
-
- int cmp;
- if (midVal < key) {
- cmp = -1; // Neither val is NaN, thisVal is smaller
- } else if (midVal > key) {
- cmp = 1; // Neither val is NaN, thisVal is larger
- } else {
- int midBits = Float.floatToIntBits(midVal);
- int keyBits = Float.floatToIntBits(key);
- cmp = (midBits == keyBits ? 0 : // Values are equal
- (midBits < keyBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
- 1)); // (0.0, -0.0) or (NaN, !NaN)
- }
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
-
- /**
- * Searches the specified array for the specified object using the binary
- * search algorithm. The array must be sorted into ascending order
- * according to the <i>natural ordering</i> of its elements (as by
- * <tt>Sort(Object[]</tt>), above) prior to making this call. If it is
- * not sorted, the results are undefined. If the array contains multiple
- * elements equal to the specified object, there is no guarantee which
- * one will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @throws ClassCastException if the array contains elements that are not
- * <i>mutually comparable</i> (for example, strings and integers),
- * or the search key in not mutually comparable with the elements
- * of the array.
- * @see Comparable
- * @see #sort(Object[])
- */
- public static int binarySearch(Object[] a, Object key) {
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- Object midVal = a[mid];
- int cmp = ((Comparable)midVal).compareTo(key);
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
- /**
- * Searches the specified array for the specified object using the binary
- * search algorithm. The array must be sorted into ascending order
- * according to the specified comparator (as by the <tt>Sort(Object[],
- * Comparator)</tt> method, above), prior to making this call. If it is
- * not sorted, the results are undefined. If the array contains multiple
- * elements equal to the specified object, there is no guarantee which one
- * will be found.
- *
- * @param a the array to be searched.
- * @param key the value to be searched for.
- * @param c the comparator by which the array is ordered. A
- * <tt>null</tt> value indicates that the elements' <i>natural
- * ordering</i> should be used.
- * @return index of the search key, if it is contained in the list;
- * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
- * <i>insertion point</i> is defined as the point at which the
- * key would be inserted into the list: the index of the first
- * element greater than the key, or <tt>list.size()</tt>, if all
- * elements in the list are less than the specified key. Note
- * that this guarantees that the return value will be >= 0 if
- * and only if the key is found.
- * @throws ClassCastException if the array contains elements that are not
- * <i>mutually comparable</i> using the specified comparator,
- * or the search key in not mutually comparable with the
- * elements of the array using this comparator.
- * @see Comparable
- * @see #sort(Object[], Comparator)
- */
- public static int binarySearch(Object[] a, Object key, Comparator c) {
- if (c==null)
- return binarySearch(a, key);
-
- int low = 0;
- int high = a.length-1;
-
- while (low <= high) {
- int mid =(low + high)/2;
- Object midVal = a[mid];
- int cmp = c.compare(midVal, key);
-
- if (cmp < 0)
- low = mid + 1;
- else if (cmp > 0)
- high = mid - 1;
- else
- return mid; // key found
- }
- return -(low + 1); // key not found.
- }
-
-
- // Equality Testing
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of longs are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(long[] a, long[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (a[i] != a2[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of ints are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(int[] a, int[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (a[i] != a2[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of shorts are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(short[] a, short a2[]) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (a[i] != a2[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of chars are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(char[] a, char[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (a[i] != a2[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of bytes are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(byte[] a, byte[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (a[i] != a2[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of equals are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(boolean[] a, boolean[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (a[i] != a2[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of doubles are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * Two doubles <tt>d1</tt> and <tt>d2</tt> are considered equal if:
- * <pre> <tt>new Double(d1).equals(new Double(d2))</tt></pre>
- * (Unlike the <tt>==</tt> operator, this method considers
- * <tt>NaN</tt> equals to itself, and 0.0d unequal to -0.0d.)
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- * @see Double#equals(Object)
- */
- public static boolean equals(double[] a, double[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i]))
- return false;
-
- return true;
- }
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of floats are
- * <i>equal</i> to one another. Two arrays are considered equal if both
- * arrays contain the same number of elements, and all corresponding pairs
- * of elements in the two arrays are equal. In other words, two arrays
- * are equal if they contain the same elements in the same order. Also,
- * two array references are considered equal if both are <tt>null</tt>.<p>
- *
- * Two floats <tt>f1</tt> and <tt>f2</tt> are considered equal if:
- * <pre> <tt>new Float(f1).equals(new Float(f2))</tt></pre>
- * (Unlike the <tt>==</tt> operator, this method considers
- * <tt>NaN</tt> equals to itself, and 0.0f unequal to -0.0f.)
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- * @see Float#equals(Object)
- */
- public static boolean equals(float[] a, float[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++)
- if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i]))
- return false;
-
- return true;
- }
-
-
- /**
- * Returns <tt>true</tt> if the two specified arrays of Objects are
- * <i>equal</i> to one another. The two arrays are considered equal if
- * both arrays contain the same number of elements, and all corresponding
- * pairs of elements in the two arrays are equal. Two objects <tt>e1</tt>
- * and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null
- * : e1.equals(e2))</tt>. In other words, the two arrays are equal if
- * they contain the same elements in the same order. Also, two array
- * references are considered equal if both are <tt>null</tt>.<p>
- *
- * @param a one array to be tested for equality.
- * @param a2 the other array to be tested for equality.
- * @return <tt>true</tt> if the two arrays are equal.
- */
- public static boolean equals(Object[] a, Object[] a2) {
- if (a==a2)
- return true;
- if (a==null || a2==null)
- return false;
-
- int length = a.length;
- if (a2.length != length)
- return false;
-
- for (int i=0; i<length; i++) {
- Object o1 = a[i];
- Object o2 = a2[i];
- if (!(o1==null ? o2==null : o1.equals(o2)))
- return false;
- }
-
- return true;
- }
-
-
- // Filling
-
- /**
- * Assigns the specified long value to each element of the specified array
- * of longs.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(long[] a, long val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified long value to each element of the specified
- * range of the specified array of longs. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(long[] a, int fromIndex, int toIndex, long val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified int value to each element of the specified array
- * of ints.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(int[] a, int val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified int value to each element of the specified
- * range of the specified array of ints. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(int[] a, int fromIndex, int toIndex, int val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified short value to each element of the specified array
- * of shorts.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(short[] a, short val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified short value to each element of the specified
- * range of the specified array of shorts. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(short[] a, int fromIndex, int toIndex, short val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified char value to each element of the specified array
- * of chars.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(char[] a, char val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified char value to each element of the specified
- * range of the specified array of chars. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(char[] a, int fromIndex, int toIndex, char val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified byte value to each element of the specified array
- * of bytes.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(byte[] a, byte val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified byte value to each element of the specified
- * range of the specified array of bytes. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified boolean value to each element of the specified
- * array of booleans.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(boolean[] a, boolean val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified boolean value to each element of the specified
- * range of the specified array of booleans. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(boolean[] a, int fromIndex, int toIndex,
- boolean val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified double value to each element of the specified
- * array of doubles.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(double[] a, double val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified double value to each element of the specified
- * range of the specified array of doubles. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(double[] a, int fromIndex, int toIndex,double val){
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified float value to each element of the specified array
- * of floats.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(float[] a, float val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified float value to each element of the specified
- * range of the specified array of floats. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(float[] a, int fromIndex, int toIndex, float val) {
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
- /**
- * Assigns the specified Object reference to each element of the specified
- * array of Objects.
- *
- * @param a the array to be filled.
- * @param val the value to be stored in all elements of the array.
- */
- public static void fill(Object[] a, Object val) {
- fill(a, 0, a.length, val);
- }
-
- /**
- * Assigns the specified Object reference to each element of the specified
- * range of the specified array of Objects. The range to be filled
- * extends from index <tt>fromIndex</tt>, inclusive, to index
- * <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the
- * range to be filled is empty.)
- *
- * @param a the array to be filled.
- * @param fromIndex the index of the first element (inclusive) to be
- * filled with the specified value.
- * @param toIndex the index of the last element (exclusive) to be
- * filled with the specified value.
- * @param val the value to be stored in all elements of the array.
- * @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
- * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
- * <tt>toIndex > a.length</tt>
- */
- public static void fill(Object[] a, int fromIndex, int toIndex,Object val){
- rangeCheck(a.length, fromIndex, toIndex);
- for (int i=fromIndex; i<toIndex; i++)
- a[i] = val;
- }
-
-
- // Misc
-
- /**
- * Returns a fixed-size list backed by the specified array. (Changes to
- * the returned list "write through" to the array.) This method acts
- * as bridge between array-based and collection-based APIs, in
- * combination with <tt>Collection.toArray</tt>. The returned list is
- * serializable.
- *
- * @param a the array by which the list will be backed.
- * @return a list view of the specified array.
- * @see Collection#toArray()
- */
- public static List asList(Object[] a) {
- return new ArrayList(a);
- }
-
- /**
- * @serial include
- */
- private static class ArrayList extends AbstractList
- implements java.io.Serializable
- {
- private static final long serialVersionUID = -2764017481108945198L;
- private Object[] a;
-
- ArrayList(Object[] array) {
- if (array==null)
- throw new NullPointerException();
- a = array;
- }
-
- public int size() {
- return a.length;
- }
-
- public Object[] toArray() {
- return (Object[]) a.clone();
- }
-
- public Object get(int index) {
- return a[index];
- }
-
- public Object set(int index, Object element) {
- Object oldValue = a[index];
- a[index] = element;
- return oldValue;
- }
-
- public int indexOf(Object o) {
- if (o==null) {
- for (int i=0; i<a.length; i++)
- if (a[i]==null)
- return i;
- } else {
- for (int i=0; i<a.length; i++)
- if (o.equals(a[i]))
- return i;
- }
- return -1;
- }
-
- public boolean contains(Object o) {
- return indexOf(o) != -1;
- }
- }
- }