- /*
- * @(#)StrictMath.java 1.26 04/06/14
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.lang;
- import java.util.Random;
- import sun.misc.FpUtils;
-
- /**
- * The class <code>StrictMath</code> contains methods for performing basic
- * numeric operations such as the elementary exponential, logarithm,
- * square root, and trigonometric functions.
- *
- * <p>To help ensure portability of Java programs, the definitions of
- * some of the numeric functions in this package require that they
- * produce the same results as certain published algorithms. These
- * algorithms are available from the well-known network library
- * <code>netlib</code> as the package "Freely Distributable Math
- * Library," <a
- * href="ftp://ftp.netlib.org/fdlibm.tar"><code>fdlibm</code></a>. These
- * algorithms, which are written in the C programming language, are
- * then to be understood as executed with all floating-point
- * operations following the rules of Java floating-point arithmetic.
- *
- * <p>The Java math library is defined with respect to
- * <code>fdlibm</code> version 5.3. Where <code>fdlibm</code> provides
- * more than one definition for a function (such as
- * <code>acos</code>), use the "IEEE 754 core function" version
- * (residing in a file whose name begins with the letter
- * <code>e</code>). The methods which require <code>fdlibm</code>
- * semantics are <code>sin</code>, <code>cos</code>, <code>tan</code>,
- * <code>asin</code>, <code>acos</code>, <code>atan</code>,
- * <code>exp</code>, <code>log</code>, <code>log10</code>,
- * <code>cbrt</code>, <code>atan2</code>, <code>pow</code>,
- * <code>sinh</code>, <code>cosh</code>, <code>tanh</code>,
- * <code>hypot</code>, <code>expm1</code>, and <code>log1p</code>.
- *
- * @author unascribed
- * @author Joseph D. Darcy
- * @version 1.26, 06/14/04
- * @since 1.3
- */
-
- public final class StrictMath {
-
- /**
- * Don't let anyone instantiate this class.
- */
- private StrictMath() {}
-
- /**
- * The <code>double</code> value that is closer than any other to
- * <i>e</i>, the base of the natural logarithms.
- */
- public static final double E = 2.7182818284590452354;
-
- /**
- * The <code>double</code> value that is closer than any other to
- * <i>pi</i>, the ratio of the circumference of a circle to its
- * diameter.
- */
- public static final double PI = 3.14159265358979323846;
-
- /**
- * Returns the trigonometric sine of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the
- * result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * @param a an angle, in radians.
- * @return the sine of the argument.
- */
- public static native double sin(double a);
-
- /**
- * Returns the trigonometric cosine of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the
- * result is NaN.</ul>
- *
- * @param a an angle, in radians.
- * @return the cosine of the argument.
- */
- public static native double cos(double a);
-
- /**
- * Returns the trigonometric tangent of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the result
- * is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * @param a an angle, in radians.
- * @return the tangent of the argument.
- */
- public static native double tan(double a);
-
- /**
- * Returns the arc sine of an angle, in the range of -<i>pi</i>/2 through
- * <i>pi</i>/2. Special cases:
- * <ul><li>If the argument is NaN or its absolute value is greater
- * than 1, then the result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * @param a the value whose arc sine is to be returned.
- * @return the arc sine of the argument.
- */
- public static native double asin(double a);
-
- /**
- * Returns the arc cosine of an angle, in the range of 0.0 through
- * <i>pi</i>. Special case:
- * <ul><li>If the argument is NaN or its absolute value is greater
- * than 1, then the result is NaN.</ul>
- *
- * @param a the value whose arc cosine is to be returned.
- * @return the arc cosine of the argument.
- */
- public static native double acos(double a);
-
- /**
- * Returns the arc tangent of an angle, in the range of -<i>pi</i>/2
- * through <i>pi</i>/2. Special cases:
- * <ul><li>If the argument is NaN, then the result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * @param a the value whose arc tangent is to be returned.
- * @return the arc tangent of the argument.
- */
- public static native double atan(double a);
-
- /**
- * Converts an angle measured in degrees to an approximately
- * equivalent angle measured in radians. The conversion from
- * degrees to radians is generally inexact.
- *
- * @param angdeg an angle, in degrees
- * @return the measurement of the angle <code>angdeg</code>
- * in radians.
- */
- public static strictfp double toRadians(double angdeg) {
- return angdeg / 180.0 * PI;
- }
-
- /**
- * Converts an angle measured in radians to an approximately
- * equivalent angle measured in degrees. The conversion from
- * radians to degrees is generally inexact; users should
- * <i>not</i> expect <code>cos(toRadians(90.0))</code> to exactly
- * equal <code>0.0</code>.
- *
- * @param angrad an angle, in radians
- * @return the measurement of the angle <code>angrad</code>
- * in degrees.
- */
- public static strictfp double toDegrees(double angrad) {
- return angrad * 180.0 / PI;
- }
-
- /**
- * Returns Euler's number <i>e</i> raised to the power of a
- * <code>double</code> value. Special cases:
- * <ul><li>If the argument is NaN, the result is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is negative infinity, then the result is
- * positive zero.</ul>
- *
- * @param a the exponent to raise <i>e</i> to.
- * @return the value <i>e</i><sup><code>a</code></sup>,
- * where <i>e</i> is the base of the natural logarithms.
- */
- public static native double exp(double a);
-
- /**
- * Returns the natural logarithm (base <i>e</i>) of a <code>double</code>
- * value. Special cases:
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is negative infinity.</ul>
- *
- * @param a a value
- * @return the value ln <code>a</code>, the natural logarithm of
- * <code>a</code>.
- */
- public static native double log(double a);
-
-
- /**
- * Returns the base 10 logarithm of a <code>double</code> value.
- * Special cases:
- *
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is negative infinity.
- * <li> If the argument is equal to 10<sup><i>n</i></sup> for
- * integer <i>n</i>, then the result is <i>n</i>.
- * </ul>
- *
- * @param a a value
- * @return the base 10 logarithm of <code>a</code>.
- * @since 1.5
- */
- public static native double log10(double a);
-
- /**
- * Returns the correctly rounded positive square root of a
- * <code>double</code> value.
- * Special cases:
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is positive
- * infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is the same as the argument.</ul>
- * Otherwise, the result is the <code>double</code> value closest to
- * the true mathematical square root of the argument value.
- *
- * @param a a value.
- * @return the positive square root of <code>a</code>.
- */
- public static native double sqrt(double a);
-
- /**
- * Returns the cube root of a <code>double</code> value. For
- * positive finite <code>x</code>, <code>cbrt(-x) ==
- * -cbrt(x)</code> that is, the cube root of a negative value is
- * the negative of the cube root of that value's magnitude.
- * Special cases:
- *
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * @param a a value.
- * @return the cube root of <code>a</code>.
- * @since 1.5
- */
- public static native double cbrt(double a);
-
- /**
- * Computes the remainder operation on two arguments as prescribed
- * by the IEEE 754 standard.
- * The remainder value is mathematically equal to
- * <code>f1 - f2</code> × <i>n</i>,
- * where <i>n</i> is the mathematical integer closest to the exact
- * mathematical value of the quotient <code>f1/f2</code>, and if two
- * mathematical integers are equally close to <code>f1/f2</code>,
- * then <i>n</i> is the integer that is even. If the remainder is
- * zero, its sign is the same as the sign of the first argument.
- * Special cases:
- * <ul><li>If either argument is NaN, or the first argument is infinite,
- * or the second argument is positive zero or negative zero, then the
- * result is NaN.
- * <li>If the first argument is finite and the second argument is
- * infinite, then the result is the same as the first argument.</ul>
- *
- * @param f1 the dividend.
- * @param f2 the divisor.
- * @return the remainder when <code>f1</code> is divided by
- * <code>f2</code>.
- */
- public static native double IEEEremainder(double f1, double f2);
-
- /**
- * Returns the smallest (closest to negative infinity)
- * <code>double</code> value that is greater than or equal to the
- * argument and is equal to a mathematical integer. Special cases:
- * <ul><li>If the argument value is already equal to a
- * mathematical integer, then the result is the same as the
- * argument. <li>If the argument is NaN or an infinity or
- * positive zero or negative zero, then the result is the same as
- * the argument. <li>If the argument value is less than zero but
- * greater than -1.0, then the result is negative zero.</ul> Note
- * that the value of <code>StrictMath.ceil(x)</code> is exactly the
- * value of <code>-StrictMath.floor(-x)</code>.
- *
- * @param a a value.
- * @return the smallest (closest to negative infinity)
- * floating-point value that is greater than or equal to
- * the argument and is equal to a mathematical integer.
- */
- public static native double ceil(double a);
-
- /**
- * Returns the largest (closest to positive infinity)
- * <code>double</code> value that is less than or equal to the
- * argument and is equal to a mathematical integer. Special cases:
- * <ul><li>If the argument value is already equal to a
- * mathematical integer, then the result is the same as the
- * argument. <li>If the argument is NaN or an infinity or
- * positive zero or negative zero, then the result is the same as
- * the argument.</ul>
- *
- * @param a a value.
- * @return the largest (closest to positive infinity)
- * floating-point value that less than or equal to the argument
- * and is equal to a mathematical integer.
- */
- public static native double floor(double a);
-
- /**
- * Returns the <code>double</code> value that is closest in value
- * to the argument and is equal to a mathematical integer. If two
- * <code>double</code> values that are mathematical integers are
- * equally close to the value of the argument, the result is the
- * integer value that is even. Special cases:
- * <ul><li>If the argument value is already equal to a mathematical
- * integer, then the result is the same as the argument.
- * <li>If the argument is NaN or an infinity or positive zero or negative
- * zero, then the result is the same as the argument.</ul>
- *
- * @param a a value.
- * @return the closest floating-point value to <code>a</code> that is
- * equal to a mathematical integer.
- * @author Joseph D. Darcy
- */
- public static double rint(double a) {
- /*
- * If the absolute value of a is not less than 2^52, it
- * is either a finite integer (the double format does not have
- * enough significand bits for a number that large to have any
- * fractional portion), an infinity, or a NaN. In any of
- * these cases, rint of the argument is the argument.
- *
- * Otherwise, the sum (twoToThe52 + a ) will properly round
- * away any fractional portion of a since ulp(twoToThe52) ==
- * 1.0; subtracting out twoToThe52 from this sum will then be
- * exact and leave the rounded integer portion of a.
- *
- * This method does *not* need to be declared strictfp to get
- * fully reproducible results. Whether or not a method is
- * declared strictfp can only make a difference in the
- * returned result if some operation would overflow or
- * underflow with strictfp semantics. The operation
- * (twoToThe52 + a ) cannot overflow since large values of a
- * are screened out; the add cannot underflow since twoToThe52
- * is too large. The subtraction ((twoToThe52 + a ) -
- * twoToThe52) will be exact as discussed above and thus
- * cannot overflow or meaningfully underflow. Finally, the
- * last multiply in the return statement is by plus or minus
- * 1.0, which is exact too.
- */
- double twoToThe52 = (double)(1L << 52); // 2^52
- double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info
- a = Math.abs(a);
-
- if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
- a = ((twoToThe52 + a ) - twoToThe52);
- }
-
- return sign * a; // restore original sign
- }
-
- /**
- * Converts rectangular coordinates (<code>x</code>, <code>y</code>)
- * to polar (r, <i>theta</i>).
- * This method computes the phase <i>theta</i> by computing an arc tangent
- * of <code>y/x</code> in the range of -<i>pi</i> to <i>pi</i>. Special
- * cases:
- * <ul><li>If either argument is NaN, then the result is NaN.
- * <li>If the first argument is positive zero and the second argument
- * is positive, or the first argument is positive and finite and the
- * second argument is positive infinity, then the result is positive
- * zero.
- * <li>If the first argument is negative zero and the second argument
- * is positive, or the first argument is negative and finite and the
- * second argument is positive infinity, then the result is negative zero.
- * <li>If the first argument is positive zero and the second argument
- * is negative, or the first argument is positive and finite and the
- * second argument is negative infinity, then the result is the
- * <code>double</code> value closest to <i>pi</i>.
- * <li>If the first argument is negative zero and the second argument
- * is negative, or the first argument is negative and finite and the
- * second argument is negative infinity, then the result is the
- * <code>double</code> value closest to -<i>pi</i>.
- * <li>If the first argument is positive and the second argument is
- * positive zero or negative zero, or the first argument is positive
- * infinity and the second argument is finite, then the result is the
- * <code>double</code> value closest to <i>pi</i>/2.
- * <li>If the first argument is negative and the second argument is
- * positive zero or negative zero, or the first argument is negative
- * infinity and the second argument is finite, then the result is the
- * <code>double</code> value closest to -<i>pi</i>/2.
- * <li>If both arguments are positive infinity, then the result is the
- * <code>double</code> value closest to <i>pi</i>/4.
- * <li>If the first argument is positive infinity and the second argument
- * is negative infinity, then the result is the <code>double</code>
- * value closest to 3*<i>pi</i>/4.
- * <li>If the first argument is negative infinity and the second argument
- * is positive infinity, then the result is the <code>double</code> value
- * closest to -<i>pi</i>/4.
- * <li>If both arguments are negative infinity, then the result is the
- * <code>double</code> value closest to -3*<i>pi</i>/4.</ul>
- *
- * @param y the ordinate coordinate
- * @param x the abscissa coordinate
- * @return the <i>theta</i> component of the point
- * (<i>r</i>, <i>theta</i>)
- * in polar coordinates that corresponds to the point
- * (<i>x</i>, <i>y</i>) in Cartesian coordinates.
- */
- public static native double atan2(double y, double x);
-
-
- /**
- * Returns the value of the first argument raised to the power of the
- * second argument. Special cases:
- *
- * <ul><li>If the second argument is positive or negative zero, then the
- * result is 1.0.
- * <li>If the second argument is 1.0, then the result is the same as the
- * first argument.
- * <li>If the second argument is NaN, then the result is NaN.
- * <li>If the first argument is NaN and the second argument is nonzero,
- * then the result is NaN.
- *
- * <li>If
- * <ul>
- * <li>the absolute value of the first argument is greater than 1
- * and the second argument is positive infinity, or
- * <li>the absolute value of the first argument is less than 1 and
- * the second argument is negative infinity,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the absolute value of the first argument is greater than 1 and
- * the second argument is negative infinity, or
- * <li>the absolute value of the
- * first argument is less than 1 and the second argument is positive
- * infinity,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If the absolute value of the first argument equals 1 and the
- * second argument is infinite, then the result is NaN.
- *
- * <li>If
- * <ul>
- * <li>the first argument is positive zero and the second argument
- * is greater than zero, or
- * <li>the first argument is positive infinity and the second
- * argument is less than zero,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is positive zero and the second argument
- * is less than zero, or
- * <li>the first argument is positive infinity and the second
- * argument is greater than zero,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is greater than zero but not a finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is less than zero but not a finite odd integer,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is a positive finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is a negative finite odd integer,
- * </ul>
- * then the result is negative zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is less than zero but not a finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is greater than zero but not a finite odd integer,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is a negative finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is a positive finite odd integer,
- * </ul>
- * then the result is negative infinity.
- *
- * <li>If the first argument is finite and less than zero
- * <ul>
- * <li> if the second argument is a finite even integer, the
- * result is equal to the result of raising the absolute value of
- * the first argument to the power of the second argument
- *
- * <li>if the second argument is a finite odd integer, the result
- * is equal to the negative of the result of raising the absolute
- * value of the first argument to the power of the second
- * argument
- *
- * <li>if the second argument is finite and not an integer, then
- * the result is NaN.
- * </ul>
- *
- * <li>If both arguments are integers, then the result is exactly equal
- * to the mathematical result of raising the first argument to the power
- * of the second argument if that result can in fact be represented
- * exactly as a <code>double</code> value.</ul>
- *
- * <p>(In the foregoing descriptions, a floating-point value is
- * considered to be an integer if and only if it is finite and a
- * fixed point of the method {@link #ceil <tt>ceil</tt>} or,
- * equivalently, a fixed point of the method {@link #floor
- * <tt>floor</tt>}. A value is a fixed point of a one-argument
- * method if and only if the result of applying the method to the
- * value is equal to the value.)
- *
- * @param a base.
- * @param b the exponent.
- * @return the value <code>a<sup>b</sup></code>.
- */
- public static native double pow(double a, double b);
-
- /**
- * Returns the closest <code>int</code> to the argument. The
- * result is rounded to an integer by adding 1/2, taking the
- * floor of the result, and casting the result to type <code>int</code>.
- * In other words, the result is equal to the value of the expression:
- * <p><pre>(int)Math.floor(a + 0.5f)</pre>
- * <p>
- * Special cases:
- * <ul><li>If the argument is NaN, the result is 0.
- * <li>If the argument is negative infinity or any value less than or
- * equal to the value of <code>Integer.MIN_VALUE</code>, the result is
- * equal to the value of <code>Integer.MIN_VALUE</code>.
- * <li>If the argument is positive infinity or any value greater than or
- * equal to the value of <code>Integer.MAX_VALUE</code>, the result is
- * equal to the value of <code>Integer.MAX_VALUE</code>.</ul>
- *
- * @param a a floating-point value to be rounded to an integer.
- * @return the value of the argument rounded to the nearest
- * <code>int</code> value.
- * @see java.lang.Integer#MAX_VALUE
- * @see java.lang.Integer#MIN_VALUE
- */
- public static int round(float a) {
- return (int)floor(a + 0.5f);
- }
-
- /**
- * Returns the closest <code>long</code> to the argument. The result
- * is rounded to an integer by adding 1/2, taking the floor of the
- * result, and casting the result to type <code>long</code>. In other
- * words, the result is equal to the value of the expression:
- * <p><pre>(long)Math.floor(a + 0.5d)</pre>
- * <p>
- * Special cases:
- * <ul><li>If the argument is NaN, the result is 0.
- * <li>If the argument is negative infinity or any value less than or
- * equal to the value of <code>Long.MIN_VALUE</code>, the result is
- * equal to the value of <code>Long.MIN_VALUE</code>.
- * <li>If the argument is positive infinity or any value greater than or
- * equal to the value of <code>Long.MAX_VALUE</code>, the result is
- * equal to the value of <code>Long.MAX_VALUE</code>.</ul>
- *
- * @param a a floating-point value to be rounded to a
- * <code>long</code>.
- * @return the value of the argument rounded to the nearest
- * <code>long</code> value.
- * @see java.lang.Long#MAX_VALUE
- * @see java.lang.Long#MIN_VALUE
- */
- public static long round(double a) {
- return (long)floor(a + 0.5d);
- }
-
- private static Random randomNumberGenerator;
-
- private static synchronized void initRNG() {
- if (randomNumberGenerator == null)
- randomNumberGenerator = new Random();
- }
-
- /**
- * Returns a <code>double</code> value with a positive sign, greater
- * than or equal to <code>0.0</code> and less than <code>1.0</code>.
- * Returned values are chosen pseudorandomly with (approximately)
- * uniform distribution from that range.
- *
- * <p>When this method is first called, it creates a single new
- * pseudorandom-number generator, exactly as if by the expression
- * <blockquote><pre>new java.util.Random</pre></blockquote> This
- * new pseudorandom-number generator is used thereafter for all
- * calls to this method and is used nowhere else.
- *
- * <p>This method is properly synchronized to allow correct use by
- * more than one thread. However, if many threads need to generate
- * pseudorandom numbers at a great rate, it may reduce contention
- * for each thread to have its own pseudorandom number generator.
- *
- * @return a pseudorandom <code>double</code> greater than or equal
- * to <code>0.0</code> and less than <code>1.0</code>.
- * @see java.util.Random#nextDouble()
- */
- public static double random() {
- if (randomNumberGenerator == null) initRNG();
- return randomNumberGenerator.nextDouble();
- }
-
- /**
- * Returns the absolute value of an <code>int</code> value..
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- *
- * <p>Note that if the argument is equal to the value of
- * <code>Integer.MIN_VALUE</code>, the most negative representable
- * <code>int</code> value, the result is that same value, which is
- * negative.
- *
- * @param a the argument whose absolute value is to be determined.
- * @return the absolute value of the argument.
- * @see java.lang.Integer#MIN_VALUE
- */
- public static int abs(int a) {
- return (a < 0) ? -a : a;
- }
-
- /**
- * Returns the absolute value of a <code>long</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- *
- * <p>Note that if the argument is equal to the value of
- * <code>Long.MIN_VALUE</code>, the most negative representable
- * <code>long</code> value, the result is that same value, which
- * is negative.
- *
- * @param a the argument whose absolute value is to be determined.
- * @return the absolute value of the argument.
- * @see java.lang.Long#MIN_VALUE
- */
- public static long abs(long a) {
- return (a < 0) ? -a : a;
- }
-
- /**
- * Returns the absolute value of a <code>float</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- * Special cases:
- * <ul><li>If the argument is positive zero or negative zero, the
- * result is positive zero.
- * <li>If the argument is infinite, the result is positive infinity.
- * <li>If the argument is NaN, the result is NaN.</ul>
- * In other words, the result is the same as the value of the expression:
- * <p><pre>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</pre>
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- public static float abs(float a) {
- return (a <= 0.0F) ? 0.0F - a : a;
- }
-
- /**
- * Returns the absolute value of a <code>double</code> value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- * Special cases:
- * <ul><li>If the argument is positive zero or negative zero, the result
- * is positive zero.
- * <li>If the argument is infinite, the result is positive infinity.
- * <li>If the argument is NaN, the result is NaN.</ul>
- * In other words, the result is the same as the value of the expression:
- * <p><code>Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)</code>
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- public static double abs(double a) {
- return (a <= 0.0D) ? 0.0D - a : a;
- }
-
- /**
- * Returns the greater of two <code>int</code> values. That is, the
- * result is the argument closer to the value of
- * <code>Integer.MAX_VALUE</code>. If the arguments have the same value,
- * the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MAX_VALUE
- */
- public static int max(int a, int b) {
- return (a >= b) ? a : b;
- }
-
- /**
- * Returns the greater of two <code>long</code> values. That is, the
- * result is the argument closer to the value of
- * <code>Long.MAX_VALUE</code>. If the arguments have the same value,
- * the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MAX_VALUE
- */
- public static long max(long a, long b) {
- return (a >= b) ? a : b;
- }
-
- private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
- private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
-
- /**
- * Returns the greater of two <code>float</code> values. That is,
- * the result is the argument closer to positive infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other negative zero, the
- * result is positive zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- */
- public static float max(float a, float b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0f) && (b == 0.0f)
- && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
- return b;
- }
- return (a >= b) ? a : b;
- }
-
- /**
- * Returns the greater of two <code>double</code> values. That
- * is, the result is the argument closer to positive infinity. If
- * the arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other negative zero, the
- * result is positive zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of <code>a</code> and <code>b</code>.
- */
- public static double max(double a, double b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0d) && (b == 0.0d)
- && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
- return b;
- }
- return (a >= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>int</code> values. That is,
- * the result the argument closer to the value of
- * <code>Integer.MIN_VALUE</code>. If the arguments have the same
- * value, the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MIN_VALUE
- */
- public static int min(int a, int b) {
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>long</code> values. That is,
- * the result is the argument closer to the value of
- * <code>Long.MIN_VALUE</code>. If the arguments have the same
- * value, the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b</code>.
- * @see java.lang.Long#MIN_VALUE
- */
- public static long min(long a, long b) {
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>float</code> values. That is,
- * the result is the value closer to negative infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If
- * one argument is positive zero and the other is negative zero,
- * the result is negative zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b.</code>
- */
- public static float min(float a, float b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0f) && (b == 0.0f)
- && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
- return b;
- }
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the smaller of two <code>double</code> values. That
- * is, the result is the value closer to negative infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other is negative zero, the
- * result is negative zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of <code>a</code> and <code>b</code>.
- */
- public static double min(double a, double b) {
- if (a != a) return a; // a is NaN
- if ((a == 0.0d) && (b == 0.0d)
- && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
- return b;
- }
- return (a <= b) ? a : b;
- }
-
- /**
- * Returns the size of an ulp of the argument. An ulp of a
- * <code>double</code> value is the positive distance between this
- * floating-point value and the <code>double</code> value next
- * larger in magnitude. Note that for non-NaN <i>x</i>,
- * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive or negative infinity, then the
- * result is positive infinity.
- * <li> If the argument is positive or negative zero, then the result is
- * <code>Double.MIN_VALUE</code>.
- * <li> If the argument is ±<code>Double.MAX_VALUE</code>, then
- * the result is equal to 2<sup>971</sup>.
- * </ul>
- *
- * @param d the floating-point value whose ulp is to be returned
- * @return the size of an ulp of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static double ulp(double d) {
- return sun.misc.FpUtils.ulp(d);
- }
-
- /**
- * Returns the size of an ulp of the argument. An ulp of a
- * <code>float</code> value is the positive distance between this
- * floating-point value and the <code>float</code> value next
- * larger in magnitude. Note that for non-NaN <i>x</i>,
- * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive or negative infinity, then the
- * result is positive infinity.
- * <li> If the argument is positive or negative zero, then the result is
- * <code>Float.MIN_VALUE</code>.
- * <li> If the argument is ±<code>Float.MAX_VALUE</code>, then
- * the result is equal to 2<sup>104</sup>.
- * </ul>
- *
- * @param f the floating-point value whose ulp is to be returned
- * @return the size of an ulp of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static float ulp(float f) {
- return sun.misc.FpUtils.ulp(f);
- }
-
- /**
- * Returns the signum function of the argument; zero if the argument
- * is zero, 1.0 if the argument is greater than zero, -1.0 if the
- * argument is less than zero.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive zero or negative zero, then the
- * result is the same as the argument.
- * </ul>
- *
- * @param d the floating-point value whose signum is to be returned
- * @return the signum function of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static double signum(double d) {
- return sun.misc.FpUtils.signum(d);
- }
-
- /**
- * Returns the signum function of the argument; zero if the argument
- * is zero, 1.0f if the argument is greater than zero, -1.0f if the
- * argument is less than zero.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive zero or negative zero, then the
- * result is the same as the argument.
- * </ul>
- *
- * @param f the floating-point value whose signum is to be returned
- * @return the signum function of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- public static float signum(float f) {
- return sun.misc.FpUtils.signum(f);
- }
-
- /**
- * Returns the hyperbolic sine of a <code>double</code> value.
- * The hyperbolic sine of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2
- * where <i>e</i> is {@linkplain Math#E Euler's number}.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * @param x The number whose hyperbolic sine is to be returned.
- * @return The hyperbolic sine of <code>x</code>.
- * @since 1.5
- */
- public static native double sinh(double x);
-
- /**
- * Returns the hyperbolic cosine of a <code>double</code> value.
- * The hyperbolic cosine of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2
- * where <i>e</i> is {@linkplain Math#E Euler's number}.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is positive
- * infinity.
- *
- * <li>If the argument is zero, then the result is <code>1.0</code>.
- *
- * </ul>
- *
- * @param x The number whose hyperbolic cosine is to be returned.
- * @return The hyperbolic cosine of <code>x</code>.
- * @since 1.5
- */
- public static native double cosh(double x);
-
- /**
- * Returns the hyperbolic tangent of a <code>double</code> value.
- * The hyperbolic tangent of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>),
- * in other words, {@linkplain Math#sinh
- * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note
- * that the absolute value of the exact tanh is always less than
- * 1.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * <li>If the argument is positive infinity, then the result is
- * <code>+1.0</code>.
- *
- * <li>If the argument is negative infinity, then the result is
- * <code>-1.0</code>.
- *
- * </ul>
- *
- * @param x The number whose hyperbolic tangent is to be returned.
- * @return The hyperbolic tangent of <code>x</code>.
- * @since 1.5
- */
- public static native double tanh(double x);
-
- /**
- * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * without intermediate overflow or underflow.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li> If either argument is infinite, then the result
- * is positive infinity.
- *
- * <li> If either argument is NaN and neither argument is infinite,
- * then the result is NaN.
- *
- * </ul>
- *
- * @param x a value
- * @param y a value
- * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * without intermediate overflow or underflow
- * @since 1.5
- */
- public static native double hypot(double x, double y);
-
- /**
- * Returns <i>e</i><sup>x</sup> -1. Note that for values of
- * <i>x</i> near 0, the exact sum of
- * <code>expm1(x)</code> + 1 is much closer to the true
- * result of <i>e</i><sup>x</sup> than <code>exp(x)</code>.
- *
- * <p>Special cases:
- * <ul>
- * <li>If the argument is NaN, the result is NaN.
- *
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- *
- * <li>If the argument is negative infinity, then the result is
- * -1.0.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * @param x the exponent to raise <i>e</i> to in the computation of
- * <i>e</i><sup><code>x</code></sup> -1.
- * @return the value <i>e</i><sup><code>x</code></sup> - 1.
- */
- public static native double expm1(double x);
-
- /**
- * Returns the natural logarithm of the sum of the argument and 1.
- * Note that for small values <code>x</code>, the result of
- * <code>log1p(x)</code> is much closer to the true result of ln(1
- * + <code>x</code>) than the floating-point evaluation of
- * <code>log(1.0+x)</code>.
- *
- * <p>Special cases:
- *
- * <ul>
- *
- * <li>If the argument is NaN or less than -1, then the result is
- * NaN.
- *
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- *
- * <li>If the argument is negative one, then the result is
- * negative infinity.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * @param x a value
- * @return the value ln(<code>x</code> + 1), the natural
- * log of <code>x</code> + 1
- */
- public static native double log1p(double x);
- }