- /*
- * @(#)BigInteger.java 1.43 01/02/16
- *
- * Copyright 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
- *
- * This software is the proprietary information of Sun Microsystems, Inc.
- * Use is subject to license terms.
- *
- */
-
- package java.math;
-
- import java.util.Random;
- import java.io.*;
-
- /**
- * Immutable arbitrary-precision integers. All operations behave as if
- * BigIntegers were represented in two's-complement notation (like Java's
- * primitive integer types). BigInteger provides analogues to all of Java's
- * primitive integer operators, and all relevant methods from java.lang.Math.
- * Additionally, BigInteger provides operations for modular arithmetic, GCD
- * calculation, primality testing, prime generation, bit manipulation,
- * and a few other miscellaneous operations.
- * <p>
- * Semantics of arithmetic operations exactly mimic those of Java's integer
- * arithmetic operators, as defined in <i>The Java Language Specification</i>.
- * For example, division by zero throws an <tt>ArithmeticException</tt>, and
- * division of a negative by a positive yields a negative (or zero) remainder.
- * All of the details in the Spec concerning overflow are ignored, as
- * BigIntegers are made as large as necessary to accommodate the results of an
- * operation.
- * <p>
- * Semantics of shift operations extend those of Java's shift operators
- * to allow for negative shift distances. A right-shift with a negative
- * shift distance results in a left shift, and vice-versa. The unsigned
- * right shift operator (>>>) is omitted, as this operation makes
- * little sense in combination with the "infinite word size" abstraction
- * provided by this class.
- * <p>
- * Semantics of bitwise logical operations exactly mimic those of Java's
- * bitwise integer operators. The binary operators (<tt>and</tt>,
- * <tt>or</tt>, <tt>xor</tt>) implicitly perform sign extension on the shorter
- * of the two operands prior to performing the operation.
- * <p>
- * Comparison operations perform signed integer comparisons, analogous to
- * those performed by Java's relational and equality operators.
- * <p>
- * Modular arithmetic operations are provided to compute residues, perform
- * exponentiation, and compute multiplicative inverses. These methods always
- * return a non-negative result, between <tt>0</tt> and <tt>(modulus - 1)</tt>,
- * inclusive.
- * <p>
- * Bit operations operate on a single bit of the two's-complement
- * representation of their operand. If necessary, the operand is sign-
- * extended so that it contains the designated bit. None of the single-bit
- * operations can produce a BigInteger with a different sign from the
- * BigInteger being operated on, as they affect only a single bit, and the
- * "infinite word size" abstraction provided by this class ensures that there
- * are infinitely many "virtual sign bits" preceding each BigInteger.
- * <p>
- * For the sake of brevity and clarity, pseudo-code is used throughout the
- * descriptions of BigInteger methods. The pseudo-code expression
- * <tt>(i + j)</tt> is shorthand for "a BigInteger whose value is
- * that of the BigInteger <tt>i</tt> plus that of the BigInteger <tt>j</tt>."
- * The pseudo-code expression <tt>(i == j)</tt> is shorthand for
- * "<tt>true</tt> if and only if the BigInteger <tt>i</tt> represents the same
- * value as the the BigInteger <tt>j</tt>." Other pseudo-code expressions are
- * interpreted similarly.
- *
- * @see BigDecimal
- * @version 1.43, 02/16/01
- * @author Josh Bloch
- * @author Michael McCloskey
- * @since JDK1.1
- */
-
- public class BigInteger extends Number implements Comparable {
- /**
- * The signum of this BigInteger: -1 for negative, 0 for zero, or
- * 1 for positive. Note that the BigInteger zero <i>must</i> have
- * a signum of 0. This is necessary to ensures that there is exactly one
- * representation for each BigInteger value.
- *
- * @serial
- */
- int signum;
-
- /**
- * The magnitude of this BigInteger, in <i>big-endian</i> order: the
- * zeroth element of this array is the most-significant int of the
- * magnitude. The magnitude must be "minimal" in that the most-significant
- * int (<tt>mag[0]</tt>) must be non-zero. This is necessary to
- * ensure that there is exactly one representation for each BigInteger
- * value. Note that this implies that the BigInteger zero has a
- * zero-length mag array.
- */
- transient int[] mag;
-
- /**
- * This field is required for historical reasons. The magnitude of a
- * BigInteger used to be in a byte representation, and is still serialized
- * that way. The mag field is used in all real computations but the
- * magnitude field is required for storage.
- *
- * @serial
- */
- private byte[] magnitude;
-
- // These "redundant fields" are initialized with recognizable nonsense
- // values, and cached the first time they are needed (or never, if they
- // aren't needed).
-
- /**
- * The bitCount of this BigInteger, as returned by bitCount(), or -1
- * (either value is acceptable).
- *
- * @serial
- * @see #bitCount
- */
- private int bitCount = -1;
-
- /**
- * The bitLength of this BigInteger, as returned by bitLength(), or -1
- * (either value is acceptable).
- *
- * @serial
- * @see #bitLength
- */
- private int bitLength = -1;
-
- /**
- * The lowest set bit of this BigInteger, as returned by getLowestSetBit(),
- * or -2 (either value is acceptable).
- *
- * @serial
- * @see #getLowestSetBit
- */
- private int lowestSetBit = -2;
-
- /**
- * The index of the lowest-order byte in the magnitude of this BigInteger
- * that contains a nonzero byte, or -2 (either value is acceptable). The
- * least significant byte has int-number 0, the next byte in order of
- * increasing significance has byte-number 1, and so forth.
- *
- * @serial
- */
- private int firstNonzeroByteNum = -2;
-
- /**
- * The index of the lowest-order int in the magnitude of this BigInteger
- * that contains a nonzero int, or -2 (either value is acceptable). The
- * least significant int has int-number 0, the next int in order of
- * increasing significance has int-number 1, and so forth.
- */
- private transient int firstNonzeroIntNum = -2;
-
- /**
- * This mask is used to obtain the value of an int as if it were unsigned.
- */
- private final static long LONG_MASK = 0xffffffffL;
-
- //Constructors
-
- /**
- * Translates a byte array containing the two's-complement binary
- * representation of a BigInteger into a BigInteger. The input array is
- * assumed to be in <i>big-endian</i> byte-order: the most significant
- * byte is in the zeroth element.
- *
- * @param val big-endian two's-complement binary representation of
- * BigInteger.
- * @throws NumberFormatException <tt>val</tt> is zero bytes long.
- */
- public BigInteger(byte[] val) {
- if (val.length == 0)
- throw new NumberFormatException("Zero length BigInteger");
-
- if (val[0] < 0) {
- mag = makePositive(val);
- signum = -1;
- } else {
- mag = stripLeadingZeroBytes(val);
- signum = (mag.length == 0 ? 0 : 1);
- }
- }
-
- /**
- * This private constructor translates an int array containing the
- * two's-complement binary representation of a BigInteger into a
- * BigInteger. The input array is assumed to be in <i>big-endian</i>
- * int-order: the most significant int is in the zeroth element.
- */
- private BigInteger(int[] val) {
- if (val.length == 0)
- throw new NumberFormatException("Zero length BigInteger");
-
- if (val[0] < 0) {
- mag = makePositive(val);
- signum = -1;
- } else {
- mag = trustedStripLeadingZeroInts(val);
- signum = (mag.length == 0 ? 0 : 1);
- }
- }
-
- /**
- * Translates the sign-magnitude representation of a BigInteger into a
- * BigInteger. The sign is represented as an integer signum value: -1 for
- * negative, 0 for zero, or 1 for positive. The magnitude is a byte array
- * in <i>big-endian</i> byte-order: the most significant byte is in the
- * zeroth element. A zero-length magnitude array is permissible, and will
- * result in in a BigInteger value of 0, whether signum is -1, 0 or 1.
- *
- * @param signum signum of the number (-1 for negative, 0 for zero, 1
- * for positive).
- * @param magnitude big-endian binary representation of the magnitude of
- * the number.
- * @throws NumberFormatException <tt>signum</tt> is not one of the three
- * legal values (-1, 0, and 1), or <tt>signum</tt> is 0 and
- * <tt>magnitude</tt> contains one or more non-zero bytes.
- */
- public BigInteger(int signum, byte[] magnitude) {
- this.mag = stripLeadingZeroBytes(magnitude);
-
- if (signum < -1 || signum > 1)
- throw(new NumberFormatException("Invalid signum value"));
-
- if (this.mag.length==0) {
- this.signum = 0;
- } else {
- if (signum == 0)
- throw(new NumberFormatException("signum-magnitude mismatch"));
- this.signum = signum;
- }
- }
-
- /**
- * A constructor for internal use that translates the sign-magnitude
- * representation of a BigInteger into a BigInteger. It checks the
- * arguments and copies the magnitude so this constructor would be
- * safe for external use.
- */
- private BigInteger(int signum, int[] magnitude) {
- this.mag = stripLeadingZeroInts(magnitude);
-
- if (signum < -1 || signum > 1)
- throw(new NumberFormatException("Invalid signum value"));
-
- if (this.mag.length==0) {
- this.signum = 0;
- } else {
- if (signum == 0)
- throw(new NumberFormatException("signum-magnitude mismatch"));
- this.signum = signum;
- }
- }
-
- /**
- * Translates the String representation of a BigInteger in the specified
- * radix into a BigInteger. The String representation consists of an
- * optional minus sign followed by a sequence of one or more digits in the
- * specified radix. The character-to-digit mapping is provided by
- * <tt>Character.digit</tt>. The String may not contain any extraneous
- * characters (whitespace, for example).
- *
- * @param val String representation of BigInteger.
- * @param radix radix to be used in interpreting <tt>val</tt>.
- * @throws NumberFormatException <tt>val</tt> is not a valid representation
- * of a BigInteger in the specified radix, or <tt>radix</tt> is
- * outside the range from <tt>Character.MIN_RADIX</tt> (2) to
- * <tt>Character.MAX_RADIX</tt> (36), inclusive.
- * @see Character#digit
- */
- public BigInteger(String val, int radix) {
- int cursor = 0, numDigits;
- int len = val.length();
-
- if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
- throw new NumberFormatException("Radix out of range");
- if (val.length() == 0)
- throw new NumberFormatException("Zero length BigInteger");
-
- // Check for leading minus sign
- signum = 1;
- if (val.charAt(0) == '-') {
- if (val.length() == 1)
- throw new NumberFormatException("Zero length BigInteger");
- signum = -1;
- cursor = 1;
- }
-
- // Skip leading zeros and compute number of digits in magnitude
- while (cursor < len &&
- Character.digit(val.charAt(cursor),radix) == 0)
- cursor++;
- if (cursor == len) {
- signum = 0;
- mag = ZERO.mag;
- return;
- } else {
- numDigits = len - cursor;
- }
-
- // Pre-allocate array of expected size. May be too large but can
- // never be too small. Typically exact.
- int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
- int numWords = (numBits + 31) /32;
- mag = new int[numWords];
-
- // Process first (potentially short) digit group
- int firstGroupLen = numDigits % digitsPerInt[radix];
- if (firstGroupLen == 0)
- firstGroupLen = digitsPerInt[radix];
- String group = val.substring(cursor, cursor += firstGroupLen);
- mag[mag.length - 1] = Integer.parseInt(group, radix);
-
- // Process remaining digit groups
- int superRadix = intRadix[radix];
- int groupVal = 0;
- while (cursor < val.length()) {
- group = val.substring(cursor, cursor += digitsPerInt[radix]);
- groupVal = Integer.parseInt(group, radix);
- destructiveMulAdd(mag, superRadix, groupVal);
- }
- // Required for cases where the array was overallocated.
- mag = trustedStripLeadingZeroInts(mag);
- }
-
- // Constructs a new BigInteger using a char array with radix=10
- BigInteger(char[] val) {
- int cursor = 0, numDigits;
- int len = val.length;
-
- // Check for leading minus sign
- signum = 1;
- if (val[0] == '-') {
- if (len == 1)
- throw new NumberFormatException("Zero length BigInteger");
- signum = -1;
- cursor = 1;
- }
-
- // Skip leading zeros and compute number of digits in magnitude
- while (cursor < len && Character.digit(val[cursor], 10) == 0)
- cursor++;
- if (cursor == len) {
- signum = 0;
- mag = ZERO.mag;
- return;
- } else {
- numDigits = len - cursor;
- }
-
- // Pre-allocate array of expected size
- int numWords;
- if (len < 10) {
- numWords = 1;
- } else {
- int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1);
- numWords = (numBits + 31) /32;
- }
- mag = new int[numWords];
-
- // Process first (potentially short) digit group
- int firstGroupLen = numDigits % digitsPerInt[10];
- if (firstGroupLen == 0)
- firstGroupLen = digitsPerInt[10];
- mag[mag.length-1] = parseInt(val, cursor, cursor += firstGroupLen);
-
- // Process remaining digit groups
- while (cursor < len) {
- int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
- destructiveMulAdd(mag, intRadix[10], groupVal);
- }
- mag = trustedStripLeadingZeroInts(mag);
- }
-
- // Create an integer with the digits between the two indexes
- // Assumes start < end. The result may be negative, but it
- // is to be treated as an unsigned value.
- private int parseInt(char[] source, int start, int end) {
- int result = Character.digit(source[start++], 10);
- if (result == -1)
- throw new NumberFormatException(new String(source));
-
- for (int index = start; index<end; index++) {
- int nextVal = Character.digit(source[index], 10);
- if (nextVal == -1)
- throw new NumberFormatException(new String(source));
- result = 10*result + nextVal;
- }
-
- return result;
- }
-
- // bitsPerDigit in the given radix times 1024
- // Rounded up to avoid underallocation.
- private static long bitsPerDigit[] = { 0, 0,
- 1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
- 3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
- 4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
- 5253, 5295};
-
- // Multiply x array times word y in place, and add word z
- private static void destructiveMulAdd(int[] x, int y, int z) {
- // Perform the multiplication word by word
- long ylong = y & LONG_MASK;
- long zlong = z & LONG_MASK;
- int len = x.length;
-
- long product = 0;
- long carry = 0;
- for (int i = len-1; i >= 0; i--) {
- product = ylong * (x[i] & LONG_MASK) + carry;
- x[i] = (int)product;
- carry = product >>> 32;
- }
-
- // Perform the addition
- long sum = (x[len-1] & LONG_MASK) + zlong;
- x[len-1] = (int)sum;
- carry = sum >>> 32;
- for (int i = len-2; i >= 0; i--) {
- sum = (x[i] & LONG_MASK) + carry;
- x[i] = (int)sum;
- carry = sum >>> 32;
- }
- }
-
- /**
- * Translates the decimal String representation of a BigInteger into a
- * BigInteger. The String representation consists of an optional minus
- * sign followed by a sequence of one or more decimal digits. The
- * character-to-digit mapping is provided by <tt>Character.digit</tt>.
- * The String may not contain any extraneous characters (whitespace, for
- * example).
- *
- * @param val decimal String representation of BigInteger.
- * @throws NumberFormatException <tt>val</tt> is not a valid representation
- * of a BigInteger.
- * @see Character#digit
- */
- public BigInteger(String val) {
- this(val, 10);
- }
-
- /**
- * Constructs a randomly generated BigInteger, uniformly distributed over
- * the range <tt>0</tt> to <tt>(2<sup>numBits</sup> - 1)</tt>, inclusive.
- * The uniformity of the distribution assumes that a fair source of random
- * bits is provided in <tt>rnd</tt>. Note that this constructor always
- * constructs a non-negative BigInteger.
- *
- * @param numBits maximum bitLength of the new BigInteger.
- * @param rnd source of randomness to be used in computing the new
- * BigInteger.
- * @throws IllegalArgumentException <tt>numBits</tt> is negative.
- * @see #bitLength
- */
- public BigInteger(int numBits, Random rnd) {
- this(1, randomBits(numBits, rnd));
- }
-
- private static byte[] randomBits(int numBits, Random rnd) {
- if (numBits < 0)
- throw new IllegalArgumentException("numBits must be non-negative");
- int numBytes = (numBits+7)/8;
- byte[] randomBits = new byte[numBytes];
-
- // Generate random bytes and mask out any excess bits
- if (numBytes > 0) {
- rnd.nextBytes(randomBits);
- int excessBits = 8*numBytes - numBits;
- randomBits[0] &= (1 << (8-excessBits)) - 1;
- }
- return randomBits;
- }
-
- /**
- * Constructs a randomly generated positive BigInteger that is probably
- * prime, with the specified bitLength.<p>
- *
- * It is recommended that the probablePrime method be used in preference
- * to this constructor unless there is a compelling need to specify a
- * certainty.
- *
- * @param bitLength bitLength of the returned BigInteger.
- * @param certainty a measure of the uncertainty that the caller is
- * willing to tolerate. The probability that the new BigInteger
- * represents a prime number will exceed
- * <tt>(1 - 1/2<sup>certainty</sup></tt>). The execution time of
- * this constructor is proportional to the value of this parameter.
- * @param rnd source of random bits used to select candidates to be
- * tested for primality.
- * @throws ArithmeticException <tt>bitLength < 2</tt>.
- * @see #bitLength
- */
- public BigInteger(int bitLength, int certainty, Random rnd) {
- BigInteger prime;
-
- if (bitLength < 2)
- throw new ArithmeticException("bitLength < 2");
- // The cutoff of 95 was chosen empirically for best performance
- prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
- : largePrime(bitLength, certainty, rnd));
- signum = 1;
- mag = prime.mag;
- }
-
- /**
- * Returns a positive BigInteger that is probably prime, with the
- * specified bitLength. The probability that a BigInteger returned
- * by this method is composite does not exceed 2<sup>-100</sup>.
- *
- * @param bitLength bitLength of the returned BigInteger.
- * @param rnd source of random bits used to select candidates to be
- * tested for primality.
- * @throws ArithmeticException <tt>bitLength < 2</tt>.
- * @see #bitLength
- */
- private static BigInteger probablePrime(int bitLength, Random rnd) {
- if (bitLength < 2)
- throw new ArithmeticException("bitLength < 2");
-
- // The cutoff of 95 was chosen empirically for best performance
- return (bitLength < 95 ? smallPrime(bitLength, 100, rnd)
- : largePrime(bitLength, 100, rnd));
- }
-
- /**
- * Find a random number of the specified bitLength that is probably prime.
- * This method is used for smaller primes, its performance degrades on
- * larger bitlengths.
- *
- * This method assumes bitLength > 1.
- */
- private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
- int magLen = (bitLength + 31) >>> 5;
- int temp[] = new int[magLen];
- int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int
- int highMask = (highBit << 1) - 1; // Bits to keep in high int
-
- while(true) {
- // Construct a candidate
- for (int i=0; i<magLen; i++)
- temp[i] = rnd.nextInt();
- temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length
- if (bitLength > 2)
- temp[magLen-1] |= 1; // Make odd if bitlen > 2
-
- BigInteger p = new BigInteger(temp, 1);
-
- // Do cheap "pre-test" if applicable
- if (bitLength > 6) {
- long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
- if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
- (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
- (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
- continue; // Candidate is composite; try another
- }
-
- // All candidates of bitLength 2 and 3 are prime by this point
- if (bitLength < 4)
- return p;
-
- // Do expensive test if we survive pre-test (or it's inapplicable)
- if (p.primeToCertainty(certainty))
- return p;
- }
- }
-
- private static final BigInteger SMALL_PRIME_PRODUCT
- = valueOf(3*5*7*11*13*17*19*23*29*31*37*41);
-
- /**
- * Find a random number of the specified bitLength that is probably prime.
- * This method is more appropriate for larger bitlengths since it uses
- * a sieve to eliminate most composites before using a more expensive
- * test.
- */
- private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
- BigInteger p;
- p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
- p.mag[p.mag.length-1] &= 0xfffffffe;
-
- // Use a sieve length likely to contain the next prime number
- int searchLen = (bitLength / 20) * 64;
- BitSieve searchSieve = new BitSieve(p, searchLen);
- BigInteger candidate = searchSieve.retrieve(p, certainty);
-
- while ((candidate == null) || (candidate.bitLength() != bitLength)) {
- p = p.add(BigInteger.valueOf(2*searchLen));
- if (p.bitLength() != bitLength)
- p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
- p.mag[p.mag.length-1] &= 0xfffffffe;
- searchSieve = new BitSieve(p, searchLen);
- candidate = searchSieve.retrieve(p, certainty);
- }
- return candidate;
- }
-
- /**
- * Returns <tt>true</tt> if this BigInteger is probably prime,
- * <tt>false</tt> if it's definitely composite.
- *
- * This method assumes bitLength > 2.
- *
- * @param certainty a measure of the uncertainty that the caller is
- * willing to tolerate: if the call returns <tt>true</tt>
- * the probability that this BigInteger is prime exceeds
- * <tt>(1 - 1/2<sup>certainty</sup>)</tt>. The execution time of
- * this method is proportional to the value of this parameter.
- * @return <tt>true</tt> if this BigInteger is probably prime,
- * <tt>false</tt> if it's definitely composite.
- */
- boolean primeToCertainty(int certainty) {
- int rounds = 0;
- int n = (certainty+1)/2;
-
- // The relationship between the certainty and the number of rounds
- // we perform is given in the draft standard ANSI X9.80, "PRIME
- // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
- int sizeInBits = this.bitLength();
- if (sizeInBits < 100) {
- rounds = 50;
- rounds = n < rounds ? n : rounds;
- return passesMillerRabin(rounds);
- }
-
- if (sizeInBits < 256) {
- rounds = 27;
- } else if (sizeInBits < 512) {
- rounds = 15;
- } else if (sizeInBits < 768) {
- rounds = 8;
- } else if (sizeInBits < 1024) {
- rounds = 4;
- } else {
- rounds = 2;
- }
- rounds = n < rounds ? n : rounds;
-
- return passesMillerRabin(rounds) && passesLucasLehmer();
- }
-
- /**
- * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
- *
- * The following assumptions are made:
- * This BigInteger is a positive, odd number.
- */
- private boolean passesLucasLehmer() {
- BigInteger thisPlusOne = this.add(ONE);
-
- // Step 1
- int d = 5;
- int sign = 1;
- while (jacobiSymbol(Math.abs(d), this) != -1) {
- d += 2;
- sign = -sign;
- }
- d = d * sign;
-
- // Step 2
- BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
-
- // Step 3
- return u.mod(this).equals(ZERO);
- }
-
- /**
- * Computes Jacobi(p,n).
- * Assumes n is positive, odd.
- */
- int jacobiSymbol(int p, BigInteger n) {
- if (p == 0)
- return 0;
-
- // Algorithm and comments adapted from Colin Plumb's C library.
- int j = 1;
- int u = n.mag[n.mag.length-1];
-
- // First, get rid of factors of 2 in p
- while ((p & 3) == 0)
- p >>= 2;
- if ((p & 1) == 0) {
- p >>= 1;
- if (((u ^ u>>1) & 2) != 0)
- j = -j; // 3 (011) or 5 (101) mod 8
- }
- if (p == 1)
- return j;
- // Then, apply quadratic reciprocity
- if ((p & u & 2) != 0) // p = u = 3 (mod 4)?
- j = -j;
- // And reduce u mod p
- u = n.mod(BigInteger.valueOf(p)).intValue();
-
- // Now compute Jacobi(u,p), u < p
- while (u != 0) {
- while ((u & 3) == 0)
- u >>= 2;
- if ((u & 1) == 0) {
- u >>= 1;
- if (((p ^ p>>1) & 2) != 0)
- j = -j; // 3 (011) or 5 (101) mod 8
- }
- if (u == 1)
- return j;
- // Now both u and p are odd, so use quadratic reciprocity
- if (u < p) {
- int t = u; u = p; p = t;
- if ((u & p & 2) != 0)// u = p = 3 (mod 4)?
- j = -j;
- }
- // Now u >= p, so it can be reduced
- u %= p;
- }
- return 0;
- }
-
- private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
- BigInteger d = BigInteger.valueOf(z);
- BigInteger u = ONE; BigInteger u2;
- BigInteger v = ONE; BigInteger v2;
-
- for (int i=k.bitLength()-2; i>=0; i--) {
- u2 = u.multiply(v).mod(n);
-
- v2 = v.square().add(d.multiply(u.square())).mod(n);
- if (v2.testBit(0)) {
- v2 = n.subtract(v2);
- v2.signum = - v2.signum;
- }
- v2 = v2.shiftRight(1);
-
- u = u2; v = v2;
- if (k.testBit(i)) {
- u2 = u.add(v).mod(n);
- if (u2.testBit(0)) {
- u2 = n.subtract(u2);
- u2.signum = - u2.signum;
- }
- u2 = u2.shiftRight(1);
-
- v2 = v.add(d.multiply(u)).mod(n);
- if (v2.testBit(0)) {
- v2 = n.subtract(v2);
- v2.signum = - v2.signum;
- }
- v2 = v2.shiftRight(1);
-
- u = u2; v = v2;
- }
- }
- return u;
- }
-
- /**
- * Returns true iff this BigInteger passes the specified number of
- * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
- * 186-2).
- *
- * The following assumptions are made:
- * This BigInteger is a positive, odd number greater than 2.
- * iterations<=50.
- */
- private boolean passesMillerRabin(int iterations) {
- // Find a and m such that m is odd and this == 1 + 2**a * m
- BigInteger thisMinusOne = this.subtract(ONE);
- BigInteger m = thisMinusOne;
- int a = m.getLowestSetBit();
- m = m.shiftRight(a);
-
- // Do the tests
- Random rnd = new Random();
- for (int i=0; i<iterations; i++) {
- // Generate a uniform random on (1, this)
- BigInteger b;
- do {
- b = new BigInteger(this.bitLength(), rnd);
- } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
-
- int j = 0;
- BigInteger z = b.modPow(m, this);
- while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
- if (j>0 && z.equals(ONE) || ++j==a)
- return false;
- z = z.modPow(TWO, this);
- }
- }
- return true;
- }
-
- /**
- * This private constructor differs from its public cousin
- * with the arguments reversed in two ways: it assumes that its
- * arguments are correct, and it doesn't copy the magnitude array.
- */
- private BigInteger(int[] magnitude, int signum) {
- this.signum = (magnitude.length==0 ? 0 : signum);
- this.mag = magnitude;
- }
-
- /**
- * This private constructor is for internal use and assumes that its
- * arguments are correct.
- */
- private BigInteger(byte[] magnitude, int signum) {
- this.signum = (magnitude.length==0 ? 0 : signum);
- this.mag = stripLeadingZeroBytes(magnitude);
- }
-
- /**
- * This private constructor is for internal use in converting
- * from a MutableBigInteger object into a BigInteger.
- */
- BigInteger(MutableBigInteger val, int sign) {
- if (val.offset > 0 || val.value.length != val.intLen) {
- mag = new int[val.intLen];
- for(int i=0; i<val.intLen; i++)
- mag[i] = val.value[val.offset+i];
- } else {
- mag = val.value;
- }
-
- this.signum = (val.intLen == 0) ? 0 : sign;
- }
-
- //Static Factory Methods
-
- /**
- * Returns a BigInteger whose value is equal to that of the specified
- * long. This "static factory method" is provided in preference to a
- * (long) constructor because it allows for reuse of frequently used
- * BigIntegers.
- *
- * @param val value of the BigInteger to return.
- * @return a BigInteger with the specified value.
- */
- public static BigInteger valueOf(long val) {
- // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
- if (val == 0)
- return ZERO;
- if (val > 0 && val <= MAX_CONSTANT)
- return posConst[(int) val];
- else if (val < 0 && val >= -MAX_CONSTANT)
- return negConst[(int) -val];
-
- return new BigInteger(val);
- }
-
- /**
- * Constructs a BigInteger with the specified value, which may not be zero.
- */
- private BigInteger(long val) {
- if (val < 0) {
- signum = -1;
- val = -val;
- } else {
- signum = 1;
- }
-
- int highWord = (int)(val >>> 32);
- if (highWord==0) {
- mag = new int[1];
- mag[0] = (int)val;
- } else {
- mag = new int[2];
- mag[0] = highWord;
- mag[1] = (int)val;
- }
- }
-
- /**
- * Returns a BigInteger with the given two's complement representation.
- * Assumes that the input array will not be modified (the returned
- * BigInteger will reference the input array if feasible).
- */
- private static BigInteger valueOf(int val[]) {
- return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
- }
-
- // Constants
-
- /**
- * Initialize static constant array when class is loaded.
- */
- private final static int MAX_CONSTANT = 16;
- private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
- private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
- static {
- for (int i = 1; i <= MAX_CONSTANT; i++) {
- int[] magnitude = new int[1];
- magnitude[0] = (int) i;
- posConst[i] = new BigInteger(magnitude, 1);
- negConst[i] = new BigInteger(magnitude, -1);
- }
- }
-
- /**
- * The BigInteger constant zero.
- *
- * @since 1.2
- */
- public static final BigInteger ZERO = new BigInteger(new int[0], 0);
-
- /**
- * The BigInteger constant one.
- *
- * @since 1.2
- */
- public static final BigInteger ONE = valueOf(1);
-
- /**
- * The BigInteger constant two. (Not exported.)
- */
- private static final BigInteger TWO = valueOf(2);
-
- // Arithmetic Operations
-
- /**
- * Returns a BigInteger whose value is <tt>(this + val)</tt>.
- *
- * @param val value to be added to this BigInteger.
- * @return <tt>this + val</tt>
- */
- public BigInteger add(BigInteger val) {
- int[] resultMag;
- if (val.signum == 0)
- return this;
- if (signum == 0)
- return val;
- if (val.signum == signum)
- return new BigInteger(add(mag, val.mag), signum);
-
- int cmp = intArrayCmp(mag, val.mag);
- if (cmp==0)
- return ZERO;
- resultMag = (cmp>0 ? subtract(mag, val.mag)
- : subtract(val.mag, mag));
- resultMag = trustedStripLeadingZeroInts(resultMag);
-
- return new BigInteger(resultMag, cmp*signum);
- }
-
- /**
- * Adds the contents of the int arrays x and y. This method allocates
- * a new int array to hold the answer and returns a reference to that
- * array.
- */
- private static int[] add(int[] x, int[] y) {
- // If x is shorter, swap the two arrays
- if (x.length < y.length) {
- int[] tmp = x;
- x = y;
- y = tmp;
- }
-
- int xIndex = x.length;
- int yIndex = y.length;
- int result[] = new int[xIndex];
- long sum = 0;
-
- // Add common parts of both numbers
- while(yIndex > 0) {
- sum = (x[--xIndex] & LONG_MASK) +
- (y[--yIndex] & LONG_MASK) + (sum >>> 32);
- result[xIndex] = (int)sum;
- }
-
- // Copy remainder of longer number while carry propagation is required
- boolean carry = (sum >>> 32 != 0);
- while (xIndex > 0 && carry)
- carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
-
- // Copy remainder of longer number
- while (xIndex > 0)
- result[--xIndex] = x[xIndex];
-
- // Grow result if necessary
- if (carry) {
- int newLen = result.length + 1;
- int temp[] = new int[newLen];
- for (int i = 1; i<newLen; i++)
- temp[i] = result[i-1];
- temp[0] = 0x01;
- result = temp;
- }
- return result;
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this - val)</tt>.
- *
- * @param val value to be subtracted from this BigInteger.
- * @return <tt>this - val</tt>
- */
- public BigInteger subtract(BigInteger val) {
- int[] resultMag;
- if (val.signum == 0)
- return this;
- if (signum == 0)
- return val.negate();
- if (val.signum != signum)
- return new BigInteger(add(mag, val.mag), signum);
-
- int cmp = intArrayCmp(mag, val.mag);
- if (cmp==0)
- return ZERO;
- resultMag = (cmp>0 ? subtract(mag, val.mag)
- : subtract(val.mag, mag));
- resultMag = trustedStripLeadingZeroInts(resultMag);
- return new BigInteger(resultMag, cmp*signum);
- }
-
- /**
- * Subtracts the contents of the second int arrays (little) from the
- * first (big). The first int array (big) must represent a larger number
- * than the second. This method allocates the space necessary to hold the
- * answer.
- */
- private static int[] subtract(int[] big, int[] little) {
- int bigIndex = big.length;
- int result[] = new int[bigIndex];
- int littleIndex = little.length;
- long difference = 0;
-
- // Subtract common parts of both numbers
- while(littleIndex > 0) {
- difference = (big[--bigIndex] & LONG_MASK) -
- (little[--littleIndex] & LONG_MASK) +
- (difference >> 32);
- result[bigIndex] = (int)difference;
- }
-
- // Subtract remainder of longer number while borrow propagates
- boolean borrow = (difference >> 32 != 0);
- while (bigIndex > 0 && borrow)
- borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
-
- // Copy remainder of longer number
- while (bigIndex > 0)
- result[--bigIndex] = big[bigIndex];
-
- return result;
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this * val)</tt>.
- *
- * @param val value to be multiplied by this BigInteger.
- * @return <tt>this * val</tt>
- */
- public BigInteger multiply(BigInteger val) {
- if (signum == 0 || val.signum==0)
- return ZERO;
-
- int[] result = multiplyToLen(mag, mag.length,
- val.mag, val.mag.length, null);
- result = trustedStripLeadingZeroInts(result);
- return new BigInteger(result, signum*val.signum);
- }
-
- /**
- * Multiplies int arrays x and y to the specified lengths and places
- * the result into z.
- */
- private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
- int xstart = xlen - 1;
- int ystart = ylen - 1;
-
- if (z == null || z.length < (xlen+ ylen))
- z = new int[xlen+ylen];
-
- long carry = 0;
- for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
- long product = (y[j] & LONG_MASK) *
- (x[xstart] & LONG_MASK) + carry;
- z[k] = (int)product;
- carry = product >>> 32;
- }
- z[xstart] = (int)carry;
-
- for (int i = xstart-1; i >= 0; i--) {
- carry = 0;
- for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
- long product = (y[j] & LONG_MASK) *
- (x[i] & LONG_MASK) +
- (z[k] & LONG_MASK) + carry;
- z[k] = (int)product;
- carry = product >>> 32;
- }
- z[i] = (int)carry;
- }
- return z;
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this<sup>2</sup>)</tt>.
- *
- * @return <tt>this<sup>2</sup></tt>
- */
- private BigInteger square() {
- if (signum == 0)
- return ZERO;
- int[] z = squareToLen(mag, mag.length, null);
- return new BigInteger(trustedStripLeadingZeroInts(z), 1);
- }
-
- /**
- * Squares the contents of the int array x. The result is placed into the
- * int array z. The contents of x are not changed.
- */
- private static final int[] squareToLen(int[] x, int len, int[] z) {
- /*
- * The algorithm used here is adapted from Colin Plumb's C library.
- * Technique: Consider the partial products in the multiplication
- * of "abcde" by itself:
- *
- * a b c d e
- * * a b c d e
- * ==================
- * ae be ce de ee
- * ad bd cd dd de
- * ac bc cc cd ce
- * ab bb bc bd be
- * aa ab ac ad ae
- *
- * Note that everything above the main diagonal:
- * ae be ce de = (abcd) * e
- * ad bd cd = (abc) * d
- * ac bc = (ab) * c
- * ab = (a) * b
- *
- * is a copy of everything below the main diagonal:
- * de
- * cd ce
- * bc bd be
- * ab ac ad ae
- *
- * Thus, the sum is 2 * (off the diagonal) + diagonal.
- *
- * This is accumulated beginning with the diagonal (which
- * consist of the squares of the digits of the input), which is then
- * divided by two, the off-diagonal added, and multiplied by two
- * again. The low bit is simply a copy of the low bit of the
- * input, so it doesn't need special care.
- */
- int zlen = len << 1;
- if (z == null || z.length < zlen)
- z = new int[zlen];
-
- // Store the squares, right shifted one bit (i.e., divided by 2)
- int lastProductLowWord = 0;
- for (int j=0, i=0; j<len; j++) {
- long piece = (x[j] & LONG_MASK);
- long product = piece * piece;
- z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
- z[i++] = (int)(product >>> 1);
- lastProductLowWord = (int)product;
- }
-
- // Add in off-diagonal sums
- for (int i=len, offset=1; i>0; i--, offset+=2) {
- int t = x[i-1];
- t = mulAdd(z, x, offset, i-1, t);
- addOne(z, offset-1, i, t);
- }
-
- // Shift back up and set low bit
- primitiveLeftShift(z, zlen, 1);
- z[zlen-1] |= x[len-1] & 1;
-
- return z;
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this / val)</tt>.
- *
- * @param val value by which this BigInteger is to be divided.
- * @return <tt>this / val</tt>
- * @throws ArithmeticException <tt>val==0</tt>
- */
- public BigInteger divide(BigInteger val) {
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger(),
- a = new MutableBigInteger(this.mag),
- b = new MutableBigInteger(val.mag);
-
- a.divide(b, q, r);
- return new BigInteger(q, this.signum * val.signum);
- }
-
- /**
- * Returns an array of two BigIntegers containing <tt>(this / val)</tt>
- * followed by <tt>(this % val)</tt>.
- *
- * @param val value by which this BigInteger is to be divided, and the
- * remainder computed.
- * @return an array of two BigIntegers: the quotient <tt>(this / val)</tt>
- * is the initial element, and the remainder <tt>(this % val)</tt>
- * is the final element.
- * @throws ArithmeticException <tt>val==0</tt>
- */
- public BigInteger[] divideAndRemainder(BigInteger val) {
- BigInteger[] result = new BigInteger[2];
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger(),
- a = new MutableBigInteger(this.mag),
- b = new MutableBigInteger(val.mag);
- a.divide(b, q, r);
- result[0] = new BigInteger(q, this.signum * val.signum);
- result[1] = new BigInteger(r, this.signum);
- return result;
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this % val)</tt>.
- *
- * @param val value by which this BigInteger is to be divided, and the
- * remainder computed.
- * @return <tt>this % val</tt>
- * @throws ArithmeticException <tt>val==0</tt>
- */
- public BigInteger remainder(BigInteger val) {
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger(),
- a = new MutableBigInteger(this.mag),
- b = new MutableBigInteger(val.mag);
-
- a.divide(b, q, r);
- return new BigInteger(r, this.signum);
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
- * Note that <tt>exponent</tt> is an integer rather than a BigInteger.
- *
- * @param exponent exponent to which this BigInteger is to be raised.
- * @return <tt>this<sup>exponent</sup></tt>
- * @throws ArithmeticException <tt>exponent</tt> is negative. (This would
- * cause the operation to yield a non-integer value.)
- */
- public BigInteger pow(int exponent) {
- if (exponent < 0)
- throw new ArithmeticException("Negative exponent");
- if (signum==0)
- return (exponent==0 ? ONE : this);
-
- // Perform exponentiation using repeated squaring trick
- int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
- int[] baseToPow2 = this.mag;
- int[] result = {1};
-
- while (exponent != 0) {
- if ((exponent & 1)==1)
- result = multiplyToLen(result, result.length,
- baseToPow2, baseToPow2.length, null);
- if ((exponent >>>= 1) != 0)
- baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
- }
- result = trustedStripLeadingZeroInts(result);
- return new BigInteger(result, newSign);
- }
-
- /**
- * Returns a BigInteger whose value is the greatest common divisor of
- * <tt>abs(this)</tt> and <tt>abs(val)</tt>. Returns 0 if
- * <tt>this==0 && val==0</tt>.
- *
- * @param val value with with the GCD is to be computed.
- * @return <tt>GCD(abs(this), abs(val))</tt>
- */
- public BigInteger gcd(BigInteger val) {
- if (val.signum == 0)
- return this.abs();
- else if (this.signum == 0)
- return val.abs();
-
- MutableBigInteger a = new MutableBigInteger(this);
- MutableBigInteger b = new MutableBigInteger(val);
-
- MutableBigInteger result = a.hybridGCD(b);
-
- return new BigInteger(result, 1);
- }
-
- /**
- * Left shift int array a up to len by n bits. Returns the array that
- * results from the shift since space may have to be reallocated.
- */
- private static int[] leftShift(int[] a, int len, int n) {
- int nInts = n >>> 5;
- int nBits = n&0x1F;
- int bitsInHighWord = bitLen(a[0]);
-
- // If shift can be done without recopy, do so
- if (n <= (32-bitsInHighWord)) {
- primitiveLeftShift(a, len, nBits);
- return a;
- } else { // Array must be resized
- if (nBits <= (32-bitsInHighWord)) {
- int result[] = new int[nInts+len];
- for (int i=0; i<len; i++)
- result[i] = a[i];
- primitiveLeftShift(result, result.length, nBits);
- return result;
- } else {
- int result[] = new int[nInts+len+1];
- for (int i=0; i<len; i++)
- result[i] = a[i];
- primitiveRightShift(result, result.length, 32 - nBits);
- return result;
- }
- }
- }
-
- // shifts a up to len right n bits assumes no leading zeros, 0<n<32
- static void primitiveRightShift(int[] a, int len, int n) {
- int n2 = 32 - n;
- for (int i=len-1, c=a[i]; i>0; i--) {
- int b = c;
- c = a[i-1];
- a[i] = (c << n2) | (b >>> n);
- }
- a[0] >>>= n;
- }
-
- // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
- static void primitiveLeftShift(int[] a, int len, int n) {
- if (len == 0 || n == 0)
- return;
-
- int n2 = 32 - n;
- for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
- int b = c;
- c = a[i+1];
- a[i] = (b << n) | (c >>> n2);
- }
- a[len-1] <<= n;
- }
-
- /**
- * Calculate bitlength of contents of the first len elements an int array,
- * assuming there are no leading zero ints.
- */
- private static int bitLength(int[] val, int len) {
- if (len==0)
- return 0;
- return ((len-1)<<5) + bitLen(val[0]);
- }
-
- /**
- * Returns a BigInteger whose value is the absolute value of this
- * BigInteger.
- *
- * @return <tt>abs(this)</tt>
- */
- public BigInteger abs() {
- return (signum >= 0 ? this : this.negate());
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(-this)</tt>.
- *
- * @return <tt>-this</tt>
- */
- public BigInteger negate() {
- return new BigInteger(this.mag, -this.signum);
- }
-
- /**
- * Returns the signum function of this BigInteger.
- *
- * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
- * positive.
- */
- public int signum() {
- return this.signum;
- }
-
- // Modular Arithmetic Operations
-
- /**
- * Returns a BigInteger whose value is <tt>(this mod m</tt>). This method
- * differs from <tt>remainder</tt> in that it always returns a
- * <i>non-negative</i> BigInteger.
- *
- * @param m the modulus.
- * @return <tt>this mod m</tt>
- * @throws ArithmeticException <tt>m <= 0</tt>
- * @see #remainder
- */
- public BigInteger mod(BigInteger m) {
- if (m.signum <= 0)
- throw new ArithmeticException("BigInteger: modulus not positive");
-
- BigInteger result = this.remainder(m);
- return (result.signum >= 0 ? result : result.add(m));
- }
-
- /**
- * Returns a BigInteger whose value is
- * <tt>(this<sup>exponent</sup> mod m)</tt>. (Unlike <tt>pow</tt>, this
- * method permits negative exponents.)
- *
- * @param exponent the exponent.
- * @param m the modulus.
- * @return <tt>this<sup>exponent</sup> mod m</tt>
- * @throws ArithmeticException <tt>m <= 0</tt>
- * @see #modInverse
- */
- public BigInteger modPow(BigInteger exponent, BigInteger m) {
- if (m.signum <= 0)
- throw new ArithmeticException("BigInteger: modulus not positive");
-
- // Trivial cases
- if (exponent.signum == 0)
- return (m.equals(ONE) ? ZERO : ONE);
-
- if (this.equals(ONE))
- return (m.equals(ONE) ? ZERO : ONE);
-
- if (this.equals(ZERO) && exponent.signum >= 0)
- return ZERO;
-
- if (this.equals(negConst[1]) && (!exponent.testBit(0)))
- return (m.equals(ONE) ? ZERO : ONE);
-
- boolean invertResult;
- if ((invertResult = (exponent.signum < 0)))
- exponent = exponent.negate();
-
- BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
- ? this.mod(m) : this);
- BigInteger result;
- if (m.testBit(0)) { // odd modulus
- result = base.oddModPow(exponent, m);
- } else {
- /*
- * Even modulus. Tear it into an "odd part" (m1) and power of two
- * (m2), exponentiate mod m1, manually exponentiate mod m2, and
- * use Chinese Remainder Theorem to combine results.
- */
-
- // Tear m apart into odd part (m1) and power of 2 (m2)
- int p = m.getLowestSetBit(); // Max pow of 2 that divides m
-
- BigInteger m1 = m.shiftRight(p); // m/2**p
- BigInteger m2 = ONE.shiftLeft(p); // 2**p
-
- // Calculate new base from m1
- BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
- ? this.mod(m1) : this);
-
- // Caculate (base ** exponent) mod m1.
- BigInteger a1 = (m1.equals(ONE) ? ZERO :
- base2.oddModPow(exponent, m1));
-
- // Calculate (this ** exponent) mod m2
- BigInteger a2 = base.modPow2(exponent, p);
-
- // Combine results using Chinese Remainder Theorem
- BigInteger y1 = m2.modInverse(m1);
- BigInteger y2 = m1.modInverse(m2);
-
- result = a1.multiply(m2).multiply(y1).add
- (a2.multiply(m1).multiply(y2)).mod(m);
- }
-
- return (invertResult ? result.modInverse(m) : result);
- }
-
- static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
- Integer.MAX_VALUE}; // Sentinel
-
- /**
- * Returns a BigInteger whose value is x to the power of y mod z.
- * Assumes: z is odd && x < z.
- */
- private BigInteger oddModPow(BigInteger y, BigInteger z) {
- /*
- * The algorithm is adapted from Colin Plumb's C library.
- *
- * The window algorithm:
- * The idea is to keep a running product of b1 = n^(high-order bits of exp)
- * and then keep appending exponent bits to it. The following patterns
- * apply to a 3-bit window (k = 3):
- * To append 0: square
- * To append 1: square, multiply by n^1
- * To append 10: square, multiply by n^1, square
- * To append 11: square, square, multiply by n^3
- * To append 100: square, multiply by n^1, square, square
- * To append 101: square, square, square, multiply by n^5
- * To append 110: square, square, multiply by n^3, square
- * To append 111: square, square, square, multiply by n^7
- *
- * Since each pattern involves only one multiply, the longer the pattern
- * the better, except that a 0 (no multiplies) can be appended directly.
- * We precompute a table of odd powers of n, up to 2^k, and can then
- * multiply k bits of exponent at a time. Actually, assuming random
- * exponents, there is on average one zero bit between needs to
- * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
- * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
- * you have to do one multiply per k+1 bits of exponent.
- *
- * The loop walks down the exponent, squaring the result buffer as
- * it goes. There is a wbits+1 bit lookahead buffer, buf, that is
- * filled with the upcoming exponent bits. (What is read after the
- * end of the exponent is unimportant, but it is filled with zero here.)
- * When the most-significant bit of this buffer becomes set, i.e.
- * (buf & tblmask) != 0, we have to decide what pattern to multiply
- * by, and when to do it. We decide, remember to do it in future
- * after a suitable number of squarings have passed (e.g. a pattern
- * of "100" in the buffer requires that we multiply by n^1 immediately;
- * a pattern of "110" calls for multiplying by n^3 after one more
- * squaring), clear the buffer, and continue.
- *
- * When we start, there is one more optimization: the result buffer
- * is implcitly one, so squaring it or multiplying by it can be
- * optimized away. Further, if we start with a pattern like "100"
- * in the lookahead window, rather than placing n into the buffer
- * and then starting to square it, we have already computed n^2
- * to compute the odd-powers table, so we can place that into
- * the buffer and save a squaring.
- *
- * This means that if you have a k-bit window, to compute n^z,
- * where z is the high k bits of the exponent, 1/2 of the time
- * it requires no squarings. 1/4 of the time, it requires 1
- * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
- * And the remaining 1/2^(k-1) of the time, the top k bits are a
- * 1 followed by k-1 0 bits, so it again only requires k-2
- * squarings, not k-1. The average of these is 1. Add that
- * to the one squaring we have to do to compute the table,
- * and you'll see that a k-bit window saves k-2 squarings
- * as well as reducing the multiplies. (It actually doesn't
- * hurt in the case k = 1, either.)
- */
- // Special case for exponent of one
- if (y.equals(ONE))
- return this;
-
- // Special case for base of zero
- if (signum==0)
- return ZERO;
-
- int[] base = (int[])mag.clone();
- int[] exp = y.mag;
- int[] mod = z.mag;
- int modLen = mod.length;
-
- // Select an appropriate window size
- int wbits = 0;
- int ebits = bitLength(exp, exp.length);
- while (ebits > bnExpModThreshTable[wbits])
- wbits++;
-
- // Calculate appropriate table size
- int tblmask = 1 << wbits;
-
- // Allocate table for precomputed odd powers of base in Montgomery form
- int[][] table = new int[tblmask][];
- for (int i=0; i<tblmask; i++)
- table[i] = new int[modLen];
-
- // Compute the modular inverse
- int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]);
-
- // Convert base to Montgomery form
- int[] a = leftShift(base, base.length, modLen << 5);
-
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger(),
- a2 = new MutableBigInteger(a),
- b2 = new MutableBigInteger(mod);
-
- a2.divide(b2, q, r);
- table[0] = r.toIntArray();
-
- // Pad table[0] with leading zeros so its length is at least modLen
- if (table[0].length < modLen) {
- int offset = modLen - table[0].length;
- int[] t2 = new int[modLen];
- for (int i=0; i<table[0].length; i++)
- t2[i+offset] = table[0][i];
- table[0] = t2;
- }
-
- // Set b to the square of the base
- int[] b = squareToLen(table[0], modLen, null);
- b = montReduce(b, mod, modLen, inv);
-
- // Set t to high half of b
- int[] t = new int[modLen];
- for(int i=0; i<modLen; i++)
- t[i] = b[i];
-
- // Fill in the table with odd powers of the base
- for (int i=1; i<tblmask; i++) {
- int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
- table[i] = montReduce(prod, mod, modLen, inv);
- }
-
- // Pre load the window that slides over the exponent
- int bitpos = 1 << ((ebits-1) & (32-1));
-
- int buf = 0;
- int elen = exp.length;
- int eIndex = 0;
- for (int i = 0; i <= wbits; i++) {
- buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
- bitpos >>>= 1;
- if (bitpos == 0) {
- eIndex++;
- bitpos = 1 << (32-1);
- elen--;
- }
- }
-
- int multpos = ebits;
-
- // The first iteration, which is hoisted out of the main loop
- ebits--;
- boolean isone = true;
-
- multpos = ebits - wbits;
- while ((buf & 1) == 0) {
- buf >>>= 1;
- multpos++;
- }
-
- int[] mult = table[buf >>> 1];
-
- buf = 0;
- if (multpos == ebits)
- isone = false;
-
- // The main loop
- while(true) {
- ebits--;
- // Advance the window
- buf <<= 1;
-
- if (elen != 0) {
- buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
- bitpos >>>= 1;
- if (bitpos == 0) {
- eIndex++;
- bitpos = 1 << (32-1);
- elen--;
- }
- }
-
- // Examine the window for pending multiplies
- if ((buf & tblmask) != 0) {
- multpos = ebits - wbits;
- while ((buf & 1) == 0) {
- buf >>>= 1;
- multpos++;
- }
- mult = table[buf >>> 1];
- buf = 0;
- }
-
- // Perform multiply
- if (ebits == multpos) {
- if (isone) {
- b = (int[])mult.clone();
- isone = false;
- } else {
- t = b;
- a = multiplyToLen(t, modLen, mult, modLen, a);
- a = montReduce(a, mod, modLen, inv);
- t = a; a = b; b = t;
- }
- }
-
- // Check if done
- if (ebits == 0)
- break;
-
- // Square the input
- if (!isone) {
- t = b;
- a = squareToLen(t, modLen, a);
- a = montReduce(a, mod, modLen, inv);
- t = a; a = b; b = t;
- }
- }
-
- // Convert result out of Montgomery form and return
- int[] t2 = new int[2*modLen];
- for(int i=0; i<modLen; i++)
- t2[i+modLen] = b[i];
-
- b = montReduce(t2, mod, modLen, inv);
-
- t2 = new int[modLen];
- for(int i=0; i<modLen; i++)
- t2[i] = b[i];
-
- return new BigInteger(1, t2);
- }
-
- /**
- * Montgomery reduce n, modulo mod. This reduces modulo mod and divides
- * by 2^(32*mlen). Adapted from Colin Plumb's C library.
- */
- private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
- int c=0;
- int len = mlen;
- int offset=0;
-
- do {
- int nEnd = n[n.length-1-offset];
- int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
- c += addOne(n, offset, mlen, carry);
- offset++;
- } while(--len > 0);
-
- while(c>0)
- c += subN(n, mod, mlen);
-
- while (intArrayCmpToLen(n, mod, mlen) >= 0)
- subN(n, mod, mlen);
-
- return n;
- }
-
-
- /*
- * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
- * equal to, or greater than arg2 up to length len.
- */
- private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
- for (int i=0; i<len; i++) {
- long b1 = arg1[i] & LONG_MASK;
- long b2 = arg2[i] & LONG_MASK;
- if (b1 < b2)
- return -1;
- if (b1 > b2)
- return 1;
- }
- return 0;
- }
-
- /**
- * Subtracts two numbers of same length, returning borrow.
- */
- private static int subN(int[] a, int[] b, int len) {
- long sum = 0;
-
- while(--len >= 0) {
- sum = (a[len] & LONG_MASK) -
- (b[len] & LONG_MASK) + (sum >> 32);
- a[len] = (int)sum;
- }
-
- return (int)(sum >> 32);
- }
-
- /**
- * Multiply an array by one word k and add to result, return the carry
- */
- static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
- long kLong = k & LONG_MASK;
- long carry = 0;
-
- offset = out.length-offset - 1;
- for (int j=len-1; j >= 0; j--) {
- long product = (in[j] & LONG_MASK) * kLong +
- (out[offset] & LONG_MASK) + carry;
- out[offset--] = (int)product;
- carry = product >>> 32;
- }
- return (int)carry;
- }
-
- /**
- * Add one word to the number a mlen words into a. Return the resulting
- * carry.
- */
- static int addOne(int[] a, int offset, int mlen, int carry) {
- offset = a.length-1-mlen-offset;
- long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
-
- a[offset] = (int)t;
- if ((t >>> 32) == 0)
- return 0;
- while (--mlen >= 0) {
- if (--offset < 0) { // Carry out of number
- return 1;
- } else {
- a[offset]++;
- if (a[offset] != 0)
- return 0;
- }
- }
- return 1;
- }
-
- /**
- * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
- */
- private BigInteger modPow2(BigInteger exponent, int p) {
- /*
- * Perform exponentiation using repeated squaring trick, chopping off
- * high order bits as indicated by modulus.
- */
- BigInteger result = valueOf(1);
- BigInteger baseToPow2 = this.mod2(p);
- int expOffset = 0;
-
- int limit = exponent.bitLength();
-
- if (this.testBit(0))
- limit = (p-1) < limit ? (p-1) : limit;
-
- while (expOffset < limit) {
- if (exponent.testBit(expOffset))
- result = result.multiply(baseToPow2).mod2(p);
- expOffset++;
- if (expOffset < limit)
- baseToPow2 = baseToPow2.square().mod2(p);
- }
-
- return result;
- }
-
- /**
- * Returns a BigInteger whose value is this mod(2**p).
- * Assumes that this BigInteger >= 0 and p > 0.
- */
- private BigInteger mod2(int p) {
- if (bitLength() <= p)
- return this;
-
- // Copy remaining ints of mag
- int numInts = (p+31)/32;
- int[] mag = new int[numInts];
- for (int i=0; i<numInts; i++)
- mag[i] = this.mag[i + (this.mag.length - numInts)];
-
- // Mask out any excess bits
- int excessBits = (numInts << 5) - p;
- mag[0] &= (1L << (32-excessBits)) - 1;
-
- return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this<sup>-1</sup> mod m)</tt>.
- *
- * @param m the modulus.
- * @return <tt>this<sup>-1</sup> mod m</tt>.
- * @throws ArithmeticException <tt> m <= 0</tt>, or this BigInteger
- * has no multiplicative inverse mod m (that is, this BigInteger
- * is not <i>relatively prime</i> to m).
- */
- public BigInteger modInverse(BigInteger m) {
- if (m.signum != 1)
- throw new ArithmeticException("BigInteger: modulus not positive");
-
- if (m.equals(ONE))
- return ZERO;
-
- // Calculate (this mod m)
- BigInteger modVal = this;
- if (signum < 0 || (intArrayCmp(mag, m.mag) >= 0))
- modVal = this.mod(m);
-
- if (modVal.equals(ONE))
- return ONE;
-
- MutableBigInteger a = new MutableBigInteger(modVal);
- MutableBigInteger b = new MutableBigInteger(m);
-
- MutableBigInteger result = a.mutableModInverse(b);
- return new BigInteger(result, 1);
- }
-
- // Shift Operations
-
- /**
- * Returns a BigInteger whose value is <tt>(this << n)</tt>.
- * The shift distance, <tt>n</tt>, may be negative, in which case
- * this method performs a right shift.
- * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
- *
- * @param n shift distance, in bits.
- * @return <tt>this << n</tt>
- * @see #shiftRight
- */
- public BigInteger shiftLeft(int n) {
- if (signum == 0)
- return ZERO;
- if (n==0)
- return this;
- if (n<0)
- return shiftRight(-n);
-
- int nInts = n >>> 5;
- int nBits = n & 0x1f;
- int magLen = mag.length;
- int newMag[] = null;
-
- if (nBits == 0) {
- newMag = new int[magLen + nInts];
- for (int i=0; i<magLen; i++)
- newMag[i] = mag[i];
- } else {
- int i = 0;
- int nBits2 = 32 - nBits;
- int highBits = mag[0] >>> nBits2;
- if (highBits != 0) {
- newMag = new int[magLen + nInts + 1];
- newMag[i++] = highBits;
- } else {
- newMag = new int[magLen + nInts];
- }
- int j=0;
- while (j < magLen-1)
- newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
- newMag[i] = mag[j] << nBits;
- }
-
- return new BigInteger(newMag, signum);
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this >> n)</tt>. Sign
- * extension is performed. The shift distance, <tt>n</tt>, may be
- * negative, in which case this method performs a left shift.
- * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
- *
- * @param n shift distance, in bits.
- * @return <tt>this >> n</tt>
- * @see #shiftLeft
- */
- public BigInteger shiftRight(int n) {
- if (n==0)
- return this;
- if (n<0)
- return shiftLeft(-n);
-
- int nInts = n >>> 5;
- int nBits = n & 0x1f;
- int magLen = mag.length;
- int newMag[] = null;
-
- // Special case: entire contents shifted off the end
- if (nInts >= magLen)
- return (signum >= 0 ? ZERO : negConst[1]);
-
- if (nBits == 0) {
- int newMagLen = magLen - nInts;
- newMag = new int[newMagLen];
- for (int i=0; i<newMagLen; i++)
- newMag[i] = mag[i];
- } else {
- int i = 0;
- int highBits = mag[0] >>> nBits;
- if (highBits != 0) {
- newMag = new int[magLen - nInts];
- newMag[i++] = highBits;
- } else {
- newMag = new int[magLen - nInts -1];
- }
-
- int nBits2 = 32 - nBits;
- int j=0;
- while (j < magLen - nInts - 1)
- newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
- }
-
- if (signum < 0) {
- // Find out whether any one-bits were shifted off the end.
- boolean onesLost = false;
- for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--)
- onesLost = (mag[i] != 0);
- if (!onesLost && nBits != 0)
- onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
-
- if (onesLost)
- newMag = javaIncrement(newMag);
- }
-
- return new BigInteger(newMag, signum);
- }
-
- int[] javaIncrement(int[] val) {
- boolean done = false;
- int lastSum = 0;
- for (int i=val.length-1; i >= 0 && lastSum == 0; i--)
- lastSum = (val[i] += 1);
- if (lastSum == 0) {
- val = new int[val.length+1];
- val[0] = 1;
- }
- return val;
- }
-
- // Bitwise Operations
-
- /**
- * Returns a BigInteger whose value is <tt>(this & val)</tt>. (This
- * method returns a negative BigInteger if and only if this and val are
- * both negative.)
- *
- * @param val value to be AND'ed with this BigInteger.
- * @return <tt>this & val</tt>
- */
- public BigInteger and(BigInteger val) {
- int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
- result[i] = (int) (getInt(result.length-i-1)
- & val.getInt(result.length-i-1));
-
- return valueOf(result);
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this | val)</tt>. (This method
- * returns a negative BigInteger if and only if either this or val is
- * negative.)
- *
- * @param val value to be OR'ed with this BigInteger.
- * @return <tt>this | val</tt>
- */
- public BigInteger or(BigInteger val) {
- int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
- result[i] = (int) (getInt(result.length-i-1)
- | val.getInt(result.length-i-1));
-
- return valueOf(result);
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this ^ val)</tt>. (This method
- * returns a negative BigInteger if and only if exactly one of this and
- * val are negative.)
- *
- * @param val value to be XOR'ed with this BigInteger.
- * @return <tt>this ^ val</tt>
- */
- public BigInteger xor(BigInteger val) {
- int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
- result[i] = (int) (getInt(result.length-i-1)
- ^ val.getInt(result.length-i-1));
-
- return valueOf(result);
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(~this)</tt>. (This method
- * returns a negative value if and only if this BigInteger is
- * non-negative.)
- *
- * @return <tt>~this</tt>
- */
- public BigInteger not() {
- int[] result = new int[intLength()];
- for (int i=0; i<result.length; i++)
- result[i] = (int) ~getInt(result.length-i-1);
-
- return valueOf(result);
- }
-
- /**
- * Returns a BigInteger whose value is <tt>(this & ~val)</tt>. This
- * method, which is equivalent to <tt>and(val.not())</tt>, is provided as
- * a convenience for masking operations. (This method returns a negative
- * BigInteger if and only if <tt>this</tt> is negative and <tt>val</tt> is
- * positive.)
- *
- * @param val value to be complemented and AND'ed with this BigInteger.
- * @return <tt>this & ~val</tt>
- */
- public BigInteger andNot(BigInteger val) {
- int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
- result[i] = (int) (getInt(result.length-i-1)
- & ~val.getInt(result.length-i-1));
-
- return valueOf(result);
- }
-
-
- // Single Bit Operations
-
- /**
- * Returns <tt>true</tt> if and only if the designated bit is set.
- * (Computes <tt>((this & (1<<n)) != 0)</tt>.)
- *
- * @param n index of bit to test.
- * @return <tt>true</tt> if and only if the designated bit is set.
- * @throws ArithmeticException <tt>n</tt> is negative.
- */
- public boolean testBit(int n) {
- if (n<0)
- throw new ArithmeticException("Negative bit address");
-
- return (getInt(n32) & (1 << (n%32))) != 0;
- }
-
- /**
- * Returns a BigInteger whose value is equivalent to this BigInteger
- * with the designated bit set. (Computes <tt>(this | (1<<n))</tt>.)
- *
- * @param n index of bit to set.
- * @return <tt>this | (1<<n)</tt>
- * @throws ArithmeticException <tt>n</tt> is negative.
- */
- public BigInteger setBit(int n) {
- if (n<0)
- throw new ArithmeticException("Negative bit address");
-
- int intNum = n32;
- int[] result = new int[Math.max(intLength(), intNum+2)];
-
- for (int i=0; i<result.length; i++)
- result[result.length-i-1] = getInt(i);
-
- result[result.length-intNum-1] |= (1 << (n%32));
-
- return valueOf(result);
- }
-
- /**
- * Returns a BigInteger whose value is equivalent to this BigInteger
- * with the designated bit cleared.
- * (Computes <tt>(this & ~(1<<n))</tt>.)
- *
- * @param n index of bit to clear.
- * @return <tt>this & ~(1<<n)</tt>
- * @throws ArithmeticException <tt>n</tt> is negative.
- */
- public BigInteger clearBit(int n) {
- if (n<0)
- throw new ArithmeticException("Negative bit address");
-
- int intNum = n32;
- int[] result = new int[Math.max(intLength(), (n+1)/32+1)];
-
- for (int i=0; i<result.length; i++)
- result[result.length-i-1] = getInt(i);
-
- result[result.length-intNum-1] &= ~(1 << (n%32));
-
- return valueOf(result);
- }
-
- /**
- * Returns a BigInteger whose value is equivalent to this BigInteger
- * with the designated bit flipped.
- * (Computes <tt>(this ^ (1<<n))</tt>.)
- *
- * @param n index of bit to flip.
- * @return <tt>this ^ (1<<n)</tt>
- * @throws ArithmeticException <tt>n</tt> is negative.
- */
- public BigInteger flipBit(int n) {
- if (n<0)
- throw new ArithmeticException("Negative bit address");
-
- int intNum = n32;
- int[] result = new int[Math.max(intLength(), intNum+2)];
-
- for (int i=0; i<result.length; i++)
- result[result.length-i-1] = getInt(i);
-
- result[result.length-intNum-1] ^= (1 << (n%32));
-
- return valueOf(result);
- }
-
- /**
- * Returns the index of the rightmost (lowest-order) one bit in this
- * BigInteger (the number of zero bits to the right of the rightmost
- * one bit). Returns -1 if this BigInteger contains no one bits.
- * (Computes <tt>(this==0? -1 : log<sub>2</sub>(this & -this))</tt>.)
- *
- * @return index of the rightmost one bit in this BigInteger.
- */
- public int getLowestSetBit() {
- /*
- * Initialize lowestSetBit field the first time this method is
- * executed. This method depends on the atomicity of int modifies;
- * without this guarantee, it would have to be synchronized.
- */
- if (lowestSetBit == -2) {
- if (signum == 0) {
- lowestSetBit = -1;
- } else {
- // Search for lowest order nonzero int
- int i,b;
- for (i=0; (b = getInt(i))==0; i++)
- ;
- lowestSetBit = (i << 5) + trailingZeroCnt(b);
- }
- }
- return lowestSetBit;
- }
-
-
- // Miscellaneous Bit Operations
-
- /**
- * Returns the number of bits in the minimal two's-complement
- * representation of this BigInteger, <i>excluding</i> a sign bit.
- * For positive BigIntegers, this is equivalent to the number of bits in
- * the ordinary binary representation. (Computes
- * <tt>(ceil(log<sub>2</sub>(this < 0 ? -this : this+1)))</tt>.)
- *
- * @return number of bits in the minimal two's-complement
- * representation of this BigInteger, <i>excluding</i> a sign bit.
- */
- public int bitLength() {
- /*
- * Initialize bitLength field the first time this method is executed.
- * This method depends on the atomicity of int modifies; without
- * this guarantee, it would have to be synchronized.
- */
- if (bitLength == -1) {
- if (signum == 0) {
- bitLength = 0;
- } else {
- // Calculate the bit length of the magnitude
- int magBitLength = ((mag.length-1) << 5) + bitLen(mag[0]);
-
- if (signum < 0) {
- // Check if magnitude is a power of two
- boolean pow2 = (bitCnt(mag[0]) == 1);
- for(int i=1; i<mag.length && pow2; i++)
- pow2 = (mag[i]==0);
-
- bitLength = (pow2 ? magBitLength-1 : magBitLength);
- } else {
- bitLength = magBitLength;
- }
- }
- }
- return bitLength;
- }
-
- /**
- * bitLen(val) is the number of bits in val.
- */
- static int bitLen(int w) {
- // Binary search - decision tree (5 tests, rarely 6)
- return
- (w < 1<<15 ?
- (w < 1<<7 ?
- (w < 1<<3 ?
- (w < 1<<1 ? (w < 1<<0 ? (w<0 ? 32 : 0) : 1) : (w < 1<<2 ? 2 : 3)) :
- (w < 1<<5 ? (w < 1<<4 ? 4 : 5) : (w < 1<<6 ? 6 : 7))) :
- (w < 1<<11 ?
- (w < 1<<9 ? (w < 1<<8 ? 8 : 9) : (w < 1<<10 ? 10 : 11)) :
- (w < 1<<13 ? (w < 1<<12 ? 12 : 13) : (w < 1<<14 ? 14 : 15)))) :
- (w < 1<<23 ?
- (w < 1<<19 ?
- (w < 1<<17 ? (w < 1<<16 ? 16 : 17) : (w < 1<<18 ? 18 : 19)) :
- (w < 1<<21 ? (w < 1<<20 ? 20 : 21) : (w < 1<<22 ? 22 : 23))) :
- (w < 1<<27 ?
- (w < 1<<25 ? (w < 1<<24 ? 24 : 25) : (w < 1<<26 ? 26 : 27)) :
- (w < 1<<29 ? (w < 1<<28 ? 28 : 29) : (w < 1<<30 ? 30 : 31)))));
- }
-
- /*
- * trailingZeroTable[i] is the number of trailing zero bits in the binary
- * representaion of i.
- */
- final static byte trailingZeroTable[] = {
- -25, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
-
- /**
- * Returns the number of bits in the two's complement representation
- * of this BigInteger that differ from its sign bit. This method is
- * useful when implementing bit-vector style sets atop BigIntegers.
- *
- * @return number of bits in the two's complement representation
- * of this BigInteger that differ from its sign bit.
- */
- public int bitCount() {
- /*
- * Initialize bitCount field the first time this method is executed.
- * This method depends on the atomicity of int modifies; without
- * this guarantee, it would have to be synchronized.
- */
- if (bitCount == -1) {
- // Count the bits in the magnitude
- int magBitCount = 0;
- for (int i=0; i<mag.length; i++)
- magBitCount += bitCnt(mag[i]);
-
- if (signum < 0) {
- // Count the trailing zeros in the magnitude
- int magTrailingZeroCount = 0, j;
- for (j=mag.length-1; mag[j]==0; j--)
- magTrailingZeroCount += 32;
- magTrailingZeroCount +=
- trailingZeroCnt(mag[j]);
-
- bitCount = magBitCount + magTrailingZeroCount - 1;
- } else {
- bitCount = magBitCount;
- }
- }
- return bitCount;
- }
-
- static int bitCnt(int val) {
- val -= (0xaaaaaaaa & val) >>> 1;
- val = (val & 0x33333333) + ((val >>> 2) & 0x33333333);
- val = val + (val >>> 4) & 0x0f0f0f0f;
- val += val >>> 8;
- val += val >>> 16;
- return val & 0xff;
- }
-
- static int trailingZeroCnt(int val) {
- // Loop unrolled for performance
- int byteVal = val & 0xff;
- if (byteVal != 0)
- return trailingZeroTable[byteVal];
-
- byteVal = (val >>> 8) & 0xff;
- if (byteVal != 0)
- return trailingZeroTable[byteVal] + 8;
-
- byteVal = (val >>> 16) & 0xff;
- if (byteVal != 0)
- return trailingZeroTable[byteVal] + 16;
-
- byteVal = (val >>> 24) & 0xff;
- return trailingZeroTable[byteVal] + 24;
- }
-
- // Primality Testing
-
- /**
- * Returns <tt>true</tt> if this BigInteger is probably prime,
- * <tt>false</tt> if it's definitely composite.
- *
- * @param certainty a measure of the uncertainty that the caller is
- * willing to tolerate: if the call returns <tt>true</tt>
- * the probability that this BigInteger is prime exceeds
- * <tt>(1 - 1/2<sup>certainty</sup>)</tt>. The execution time of
- * this method is proportional to the value of this parameter.
- * @return <tt>true</tt> if this BigInteger is probably prime,
- * <tt>false</tt> if it's definitely composite.
- */
- public boolean isProbablePrime(int certainty) {
- int n = (certainty+1)/2;
- if (n <= 0)
- return true;
- BigInteger w = this.abs();
- if (w.equals(TWO))
- return true;
- if (!w.testBit(0) || w.equals(ONE))
- return false;
-
- return w.primeToCertainty(certainty);
- }
-
- // Comparison Operations
-
- /**
- * Compares this BigInteger with the specified BigInteger. This method is
- * provided in preference to individual methods for each of the six
- * boolean comparison operators (<, ==, >, >=, !=, <=). The
- * suggested idiom for performing these comparisons is:
- * <tt>(x.compareTo(y)</tt> <<i>op</i>> <tt>0)</tt>,
- * where <<i>op</i>> is one of the six comparison operators.
- *
- * @param val BigInteger to which this BigInteger is to be compared.
- * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
- * to, or greater than <tt>val</tt>.
- */
- public int compareTo(BigInteger val) {
- return (signum==val.signum
- ? signum*intArrayCmp(mag, val.mag)
- : (signum>val.signum ? 1 : -1));
- }
-
- /**
- * Compares this BigInteger with the specified Object. If the Object is a
- * BigInteger, this method behaves like <tt>compareTo(BigInteger)</tt>.
- * Otherwise, it throws a <tt>ClassCastException</tt> (as BigIntegers are
- * comparable only to other BigIntegers).
- *
- * @param o Object to which this BigInteger is to be compared.
- * @return a negative number, zero, or a positive number as this
- * BigInteger is numerically less than, equal to, or greater
- * than <tt>o</tt>, which must be a BigInteger.
- * @throws ClassCastException <tt>o</tt> is not a BigInteger.
- * @see #compareTo(java.math.BigInteger)
- * @see Comparable
- * @since 1.2
- */
- public int compareTo(Object o) {
- return compareTo((BigInteger)o);
- }
-
- /*
- * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is
- * less than, equal to, or greater than arg2.
- */
- private static int intArrayCmp(int[] arg1, int[] arg2) {
- if (arg1.length < arg2.length)
- return -1;
- if (arg1.length > arg2.length)
- return 1;
-
- // Argument lengths are equal; compare the values
- for (int i=0; i<arg1.length; i++) {
- long b1 = arg1[i] & LONG_MASK;
- long b2 = arg2[i] & LONG_MASK;
- if (b1 < b2)
- return -1;
- if (b1 > b2)
- return 1;
- }
- return 0;
- }
-
- /**
- * Compares this BigInteger with the specified Object for equality.
- *
- * @param x Object to which this BigInteger is to be compared.
- * @return <tt>true</tt> if and only if the specified Object is a
- * BigInteger whose value is numerically equal to this BigInteger.
- */
- public boolean equals(Object x) {
- // This test is just an optimization, which may or may not help
- if (x == this)
- return true;
-
- if (!(x instanceof BigInteger))
- return false;
- BigInteger xInt = (BigInteger) x;
-
- if (xInt.signum != signum || xInt.mag.length != mag.length)
- return false;
-
- for (int i=0; i<mag.length; i++)
- if (xInt.mag[i] != mag[i])
- return false;
-
- return true;
- }
-
- /**
- * Returns the minimum of this BigInteger and <tt>val</tt>.
- *
- * @param val value with with the minimum is to be computed.
- * @return the BigInteger whose value is the lesser of this BigInteger and
- * <tt>val</tt>. If they are equal, either may be returned.
- */
- public BigInteger min(BigInteger val) {
- return (compareTo(val)<0 ? this : val);
- }
-
- /**
- * Returns the maximum of this BigInteger and <tt>val</tt>.
- *
- * @param val value with with the maximum is to be computed.
- * @return the BigInteger whose value is the greater of this and
- * <tt>val</tt>. If they are equal, either may be returned.
- */
- public BigInteger max(BigInteger val) {
- return (compareTo(val)>0 ? this : val);
- }
-
-
- // Hash Function
-
- /**
- * Returns the hash code for this BigInteger.
- *
- * @return hash code for this BigInteger.
- */
- public int hashCode() {
- int hashCode = 0;
-
- for (int i=0; i<mag.length; i++)
- hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
-
- return hashCode * signum;
- }
-
- /**
- * Returns the String representation of this BigInteger in the given radix.
- * If the radix is outside the range from <tt>Character.MIN_RADIX</tt> (2)
- * to <tt>Character.MAX_RADIX</tt> (36) inclusive, it will default to 10
- * (as is the case for <tt>Integer.toString</tt>). The digit-to-character
- * mapping provided by <tt>Character.forDigit</tt> is used, and a minus
- * sign is prepended if appropriate. (This representation is compatible
- * with the (String, int) constructor.)
- *
- * @param radix radix of the String representation.
- * @return String representation of this BigInteger in the given radix.
- * @see Integer#toString
- * @see Character#forDigit
- * @see #BigInteger(java.lang.String, int)
- */
- public String toString(int radix) {
- if (signum == 0)
- return "0";
- if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
- radix = 10;
-
- // Compute upper bound on number of digit groups and allocate space
- int maxNumDigitGroups = (4*mag.length + 6)/7;
- String digitGroup[] = new String[maxNumDigitGroups];
-
- // Translate number to string, a digit group at a time
- BigInteger tmp = this.abs();
- int numGroups = 0;
- while (tmp.signum != 0) {
- BigInteger d = longRadix[radix];
-
- MutableBigInteger q = new MutableBigInteger(),
- r = new MutableBigInteger(),
- a = new MutableBigInteger(tmp.mag),
- b = new MutableBigInteger(d.mag);
- a.divide(b, q, r);
- BigInteger q2 = new BigInteger(q, tmp.signum * d.signum);
- BigInteger r2 = new BigInteger(r, tmp.signum * d.signum);
-
- digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
- tmp = q2;
- }
-
- // Put sign (if any) and first digit group into result buffer
- StringBuffer buf = new StringBuffer(numGroups*digitsPerLong[radix]+1);
- if (signum<0)
- buf.append('-');
- buf.append(digitGroup[numGroups-1]);
-
- // Append remaining digit groups padded with leading zeros
- for (int i=numGroups-2; i>=0; i--) {
- // Prepend (any) leading zeros for this digit group
- int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
- if (numLeadingZeros != 0)
- buf.append(zeros[numLeadingZeros]);
- buf.append(digitGroup[i]);
- }
- return buf.toString();
- }
-
- /* zero[i] is a string of i consecutive zeros. */
- private static String zeros[] = new String[64];
- static {
- zeros[63] =
- "000000000000000000000000000000000000000000000000000000000000000";
- for (int i=0; i<63; i++)
- zeros[i] = zeros[63].substring(0, i);
- }
-
- /**
- * Returns the decimal String representation of this BigInteger. The
- * digit-to-character mapping provided by <tt>Character.forDigit</tt> is
- * used, and a minus sign is prepended if appropriate. (This
- * representation is compatible with the (String) constructor, and allows
- * for String concatenation with Java's + operator.)
- *
- * @return decimal String representation of this BigInteger.
- * @see Character#forDigit
- * @see #BigInteger(java.lang.String)
- */
- public String toString() {
- return toString(10);
- }
-
- /**
- * Returns a byte array containing the two's-complement representation of
- * this BigInteger. The byte array will be in <i>big-endian</i>
- * byte-order: the most significant byte is in the zeroth element. The
- * array will contain the minimum number of bytes required to represent
- * this BigInteger, including at least one sign bit, which is
- * <tt>(ceil((this.bitLength() + 1)/8))</tt>. (This representation is
- * compatible with the (byte[]) constructor.)
- *
- * @return a byte array containing the two's-complement representation of
- * this BigInteger.
- * @see #BigInteger(byte[])
- */
- public byte[] toByteArray() {
- int byteLen = bitLength()/8 + 1;
- byte[] byteArray = new byte[byteLen];
-
- for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) {
- if (bytesCopied == 4) {
- nextInt = getInt(intIndex++);
- bytesCopied = 1;
- } else {
- nextInt >>>= 8;
- bytesCopied++;
- }
- byteArray[i] = (byte)nextInt;
- }
- return byteArray;
- }
-
- /**
- * Converts this BigInteger to an int. Standard <i>narrowing primitive
- * conversion</i> as defined in <i>The Java Language Specification</i>:
- * if this BigInteger is too big to fit in an int, only the low-order
- * 32 bits are returned.
- *
- * @return this BigInteger converted to an int.
- */
- public int intValue() {
- int result = 0;
- result = getInt(0);
- return result;
- }
-
- /**
- * Converts this BigInteger to a long. Standard <i>narrowing primitive
- * conversion</i> as defined in <i>The Java Language Specification</i>:
- * if this BigInteger is too big to fit in a long, only the low-order
- * 64 bits are returned.
- *
- * @return this BigInteger converted to a long.
- */
- public long longValue() {
- long result = 0;
-
- for (int i=1; i>=0; i--)
- result = (result << 32) + (getInt(i) & LONG_MASK);
- return result;
- }
-
- /**
- * Converts this BigInteger to a float. Similar to the double-to-float
- * <i>narrowing primitive conversion</i> defined in <i>The Java Language
- * Specification</i>: if this BigInteger has too great a magnitude to
- * represent as a float, it will be converted to infinity or negative
- * infinity, as appropriate.
- *
- * @return this BigInteger converted to a float.
- */
- public float floatValue() {
- // Somewhat inefficient, but guaranteed to work.
- return Float.valueOf(this.toString()).floatValue();
- }
-
- /**
- * Converts this BigInteger to a double. Similar to the double-to-float
- * <i>narrowing primitive conversion</i> defined in <i>The Java Language
- * Specification</i>: if this BigInteger has too great a magnitude to
- * represent as a double, it will be converted to infinity or negative
- * infinity, as appropriate.
- *
- * @return this BigInteger converted to a double.
- */
- public double doubleValue() {
- // Somewhat inefficient, but guaranteed to work.
- return Double.valueOf(this.toString()).doubleValue();
- }
-
- /**
- * Returns a copy of the input array stripped of any leading zero bytes.
- */
- private static int[] stripLeadingZeroInts(int val[]) {
- int byteLength = val.length;
- int keep;
-
- // Find first nonzero byte
- for (keep=0; keep<val.length && val[keep]==0; keep++)
- ;
-
- int result[] = new int[val.length - keep];
- for(int i=0; i<val.length - keep; i++)
- result[i] = val[keep+i];
-
- return result;
- }
-
- /**
- * Returns the input array stripped of any leading zero bytes.
- * Since the source is trusted the copying may be skipped.
- */
- private static int[] trustedStripLeadingZeroInts(int val[]) {
- int byteLength = val.length;
- int keep;
-
- // Find first nonzero byte
- for (keep=0; keep<val.length && val[keep]==0; keep++)
- ;
-
- // Only perform copy if necessary
- if (keep > 0) {
- int result[] = new int[val.length - keep];
- for(int i=0; i<val.length - keep; i++)
- result[i] = val[keep+i];
- return result;
- }
- return val;
- }
-
- /**
- * Returns a copy of the input array stripped of any leading zero bytes.
- */
- private static int[] stripLeadingZeroBytes(byte a[]) {
- int byteLength = a.length;
- int keep;
-
- // Find first nonzero byte
- for (keep=0; keep<a.length && a[keep]==0; keep++)
- ;
-
- // Allocate new array and copy relevant part of input array
- int intLength = ((byteLength - keep) + 3)/4;
- int[] result = new int[intLength];
- int b = byteLength - 1;
- for (int i = intLength-1; i >= 0; i--) {
- result[i] = a[b--] & 0xff;
- int bytesRemaining = b - keep + 1;
- int bytesToTransfer = Math.min(3, bytesRemaining);
- for (int j=8; j <= 8*bytesToTransfer; j += 8)
- result[i] |= ((a[b--] & 0xff) << j);
- }
- return result;
- }
-
- /**
- * Takes an array a representing a negative 2's-complement number and
- * returns the minimal (no leading zero bytes) unsigned whose value is -a.
- */
- private static int[] makePositive(byte a[]) {
- int keep, k;
- int byteLength = a.length;
-
- // Find first non-sign (0xff) byte of input
- for (keep=0; keep<byteLength && a[keep]==-1; keep++)
- ;
-
-
- /* Allocate output array. If all non-sign bytes are 0x00, we must
- * allocate space for one extra output byte. */
- for (k=keep; k<byteLength && a[k]==0; k++)
- ;
-
- int extraByte = (k==byteLength) ? 1 : 0;
- int intLength = ((byteLength - keep + extraByte) + 3)/4;
- int result[] = new int[intLength];
-
- /* Copy one's complement of input into into output, leaving extra
- * byte (if it exists) == 0x00 */
- int b = byteLength - 1;
- for (int i = intLength-1; i >= 0; i--) {
- result[i] = a[b--] & 0xff;
- int numBytesToTransfer = Math.min(3, b-keep+1);
- if (numBytesToTransfer < 0)
- numBytesToTransfer = 0;
- for (int j=8; j <= 8*numBytesToTransfer; j += 8)
- result[i] |= ((a[b--] & 0xff) << j);
-
- // Mask indicates which bits must be complemented
- int mask = -1 >>> (8*(3-numBytesToTransfer));
- result[i] = ~result[i] & mask;
- }
-
- // Add one to one's complement to generate two's complement
- for (int i=result.length-1; i>=0; i--) {
- result[i] = (int)((result[i] & LONG_MASK) + 1);
- if (result[i] != 0)
- break;
- }
-
- return result;
- }
-
- /**
- * Takes an array a representing a negative 2's-complement number and
- * returns the minimal (no leading zero ints) unsigned whose value is -a.
- */
- private static int[] makePositive(int a[]) {
- int keep, j;
-
- // Find first non-sign (0xffffffff) int of input
- for (keep=0; keep<a.length && a[keep]==-1; keep++)
- ;
-
- /* Allocate output array. If all non-sign ints are 0x00, we must
- * allocate space for one extra output int. */
- for (j=keep; j<a.length && a[j]==0; j++)
- ;
- int extraInt = (j==a.length ? 1 : 0);
- int result[] = new int[a.length - keep + extraInt];
-
- /* Copy one's complement of input into into output, leaving extra
- * int (if it exists) == 0x00 */
- for (int i = keep; i<a.length; i++)
- result[i - keep + extraInt] = ~a[i];
-
- // Add one to one's complement to generate two's complement
- for (int i=result.length-1; ++result[i]==0; i--)
- ;
-
- return result;
- }
-
- /*
- * The following two arrays are used for fast String conversions. Both
- * are indexed by radix. The first is the number of digits of the given
- * radix that can fit in a Java long without "going negative", i.e., the
- * highest integer n such that radix**n < 2**63. The second is the
- * "long radix" that tears each number into "long digits", each of which
- * consists of the number of digits in the corresponding element in
- * digitsPerLong (longRadix[i] = i**digitPerLong[i]). Both arrays have
- * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
- * used.
- */
- private static int digitsPerLong[] = {0, 0,
- 62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
- 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
-
- private static BigInteger longRadix[] = {null, null,
- valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
- valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
- valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
- valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
- valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
- valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
- valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
- valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
- valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
- valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
- valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
- valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
- valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
- valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
- valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
- valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
- valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
- valueOf(0x41c21cb8e1000000L)};
-
- /*
- * These two arrays are the integer analogue of above.
- */
- private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
- 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
-
- private static int intRadix[] = {0, 0,
- 0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
- 0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
- 0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f, 0x10000000,
- 0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
- 0x6c20a40, 0x8d2d931, 0xb640000, 0xe8d4a51, 0x1269ae40,
- 0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
- 0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
- };
-
- /**
- * These routines provide access to the two's complement representation
- * of BigIntegers.
- */
-
- /**
- * Returns the length of the two's complement representation in ints,
- * including space for at least one sign bit.
- */
- private int intLength() {
- return bitLength()/32 + 1;
- }
-
- /* Returns sign bit */
- private int signBit() {
- return (signum < 0 ? 1 : 0);
- }
-
- /* Returns an int of sign bits */
- private int signInt() {
- return (int) (signum < 0 ? -1 : 0);
- }
-
- /**
- * Returns the specified int of the little-endian two's complement
- * representation (int 0 is the least significant). The int number can
- * be arbitrarily high (values are logically preceded by infinitely many
- * sign ints).
- */
- private int getInt(int n) {
- if (n < 0)
- return 0;
- if (n >= mag.length)
- return signInt();
-
- int magInt = mag[mag.length-n-1];
-
- return (int) (signum >= 0 ? magInt :
- (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
- }
-
- /**
- * Returns the index of the int that contains the first nonzero int in the
- * little-endian binary representation of the magnitude (int 0 is the
- * least significant). If the magnitude is zero, return value is undefined.
- */
- private int firstNonzeroIntNum() {
- /*
- * Initialize firstNonzeroIntNum field the first time this method is
- * executed. This method depends on the atomicity of int modifies;
- * without this guarantee, it would have to be synchronized.
- */
- if (firstNonzeroIntNum == -2) {
- // Search for the first nonzero int
- int i;
- for (i=mag.length-1; i>=0 && mag[i]==0; i--)
- ;
- firstNonzeroIntNum = mag.length-i-1;
- }
- return firstNonzeroIntNum;
- }
-
- /** use serialVersionUID from JDK 1.1. for interoperability */
- private static final long serialVersionUID = -8287574255936472291L;
-
- /**
- * Reconstitute the <tt>BigInteger</tt> instance from a stream (that is,
- * deserialize it). The magnitude is read in as an array of bytes
- * for historical reasons, but it is converted to an array of ints
- * and the byte array is discarded.
- */
- private void readObject(java.io.ObjectInputStream s)
- throws java.io.IOException, ClassNotFoundException {
- /*
- * In order to maintain compatibility with previous serialized forms,
- * the magnitude of a BigInteger is serialized as an array of bytes.
- * The magnitude field is used as a temporary store for the byte array
- * that is deserialized. The cached computation fields should be
- * transient but are serialized for compatibility reasons.
- */
-
- // Read in all fields
- s.defaultReadObject();
-
- // Validate signum
- if (signum < -1 || signum > 1)
- throw new java.io.StreamCorruptedException(
- "BigInteger: Invalid signum value");
- if ((magnitude.length==0) != (signum==0))
- throw new java.io.StreamCorruptedException(
- "BigInteger: signum-magnitude mismatch");
-
- // Set "cached computation" fields to their initial values
- bitCount = bitLength = -1;
- lowestSetBit = firstNonzeroByteNum = firstNonzeroIntNum = -2;
-
- // Calculate mag field from magnitude and discard magnitude
- mag = stripLeadingZeroBytes(magnitude);
- magnitude = null;
- }
-
- /**
- * Ensure that magnitude (the obsolete byte array representation)
- * is set prior to serializaing this BigInteger. This provides a
- * serialized form that is compatible with older (pre-1.3) versions.
- */
- private synchronized Object writeReplace() {
- if (magnitude == null)
- magnitude = magSerializedForm();
-
- return this;
- }
-
- /**
- * Returns the mag array as an array of bytes.
- */
- private byte[] magSerializedForm() {
- int bitLen = (mag.length == 0 ? 0 :
- ((mag.length - 1) << 5) + bitLen(mag[0]));
- int byteLen = (bitLen + 7)/8;
- byte[] result = new byte[byteLen];
-
- for (int i=byteLen-1, bytesCopied=4, intIndex=mag.length-1, nextInt=0;
- i>=0; i--) {
- if (bytesCopied == 4) {
- nextInt = mag[intIndex--];
- bytesCopied = 1;
- } else {
- nextInt >>>= 8;
- bytesCopied++;
- }
- result[i] = (byte)nextInt;
- }
- return result;
- }
- }