- /*
- * @(#)AffineTransform.java 1.71 03/12/19
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.awt.geom;
-
- import java.awt.Shape;
-
- /**
- * The <code>AffineTransform</code> class represents a 2D affine transform
- * that performs a linear mapping from 2D coordinates to other 2D
- * coordinates that preserves the "straightness" and
- * "parallelness" of lines. Affine transformations can be constructed
- * using sequences of translations, scales, flips, rotations, and shears.
- * <p>
- * Such a coordinate transformation can be represented by a 3 row by
- * 3 column matrix with an implied last row of [ 0 0 1 ]. This matrix
- * transforms source coordinates <code>(x, y)</code> into
- * destination coordinates <code>(x', y')</code> by considering
- * them to be a column vector and multiplying the coordinate vector
- * by the matrix according to the following process:
- * <pre>
- * [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ]
- * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ]
- * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
- * </pre>
- *
- * @version 1.71, 12/19/03
- * @author Jim Graham
- */
- public class AffineTransform implements Cloneable, java.io.Serializable {
- /*
- * This constant is only useful for the cached type field.
- * It indicates that the type has been decached and must be recalculated.
- */
- private static final int TYPE_UNKNOWN = -1;
-
- /**
- * This constant indicates that the transform defined by this object
- * is an identity transform.
- * An identity transform is one in which the output coordinates are
- * always the same as the input coordinates.
- * If this transform is anything other than the identity transform,
- * the type will either be the constant GENERAL_TRANSFORM or a
- * combination of the appropriate flag bits for the various coordinate
- * conversions that this transform performs.
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_IDENTITY = 0;
-
- /**
- * This flag bit indicates that the transform defined by this object
- * performs a translation in addition to the conversions indicated
- * by other flag bits.
- * A translation moves the coordinates by a constant amount in x
- * and y without changing the length or angle of vectors.
- * @see #TYPE_IDENTITY
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_TRANSLATION = 1;
-
- /**
- * This flag bit indicates that the transform defined by this object
- * performs a uniform scale in addition to the conversions indicated
- * by other flag bits.
- * A uniform scale multiplies the length of vectors by the same amount
- * in both the x and y directions without changing the angle between
- * vectors.
- * This flag bit is mutually exclusive with the TYPE_GENERAL_SCALE flag.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_UNIFORM_SCALE = 2;
-
- /**
- * This flag bit indicates that the transform defined by this object
- * performs a general scale in addition to the conversions indicated
- * by other flag bits.
- * A general scale multiplies the length of vectors by different
- * amounts in the x and y directions without changing the angle
- * between perpendicular vectors.
- * This flag bit is mutually exclusive with the TYPE_UNIFORM_SCALE flag.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_GENERAL_SCALE = 4;
-
- /**
- * This constant is a bit mask for any of the scale flag bits.
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- */
- public static final int TYPE_MASK_SCALE = (TYPE_UNIFORM_SCALE |
- TYPE_GENERAL_SCALE);
-
- /**
- * This flag bit indicates that the transform defined by this object
- * performs a mirror image flip about some axis which changes the
- * normally right handed coordinate system into a left handed
- * system in addition to the conversions indicated by other flag bits.
- * A right handed coordinate system is one where the positive X
- * axis rotates counterclockwise to overlay the positive Y axis
- * similar to the direction that the fingers on your right hand
- * curl when you stare end on at your thumb.
- * A left handed coordinate system is one where the positive X
- * axis rotates clockwise to overlay the positive Y axis similar
- * to the direction that the fingers on your left hand curl.
- * There is no mathematical way to determine the angle of the
- * original flipping or mirroring transformation since all angles
- * of flip are identical given an appropriate adjusting rotation.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_FLIP = 64;
- /* NOTE: TYPE_FLIP was added after GENERAL_TRANSFORM was in public
- * circulation and the flag bits could no longer be conveniently
- * renumbered without introducing binary incompatibility in outside
- * code.
- */
-
- /**
- * This flag bit indicates that the transform defined by this object
- * performs a quadrant rotation by some multiple of 90 degrees in
- * addition to the conversions indicated by other flag bits.
- * A rotation changes the angles of vectors by the same amount
- * regardless of the original direction of the vector and without
- * changing the length of the vector.
- * This flag bit is mutually exclusive with the TYPE_GENERAL_ROTATION flag.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_QUADRANT_ROTATION = 8;
-
- /**
- * This flag bit indicates that the transform defined by this object
- * performs a rotation by an arbitrary angle in addition to the
- * conversions indicated by other flag bits.
- * A rotation changes the angles of vectors by the same amount
- * regardless of the original direction of the vector and without
- * changing the length of the vector.
- * This flag bit is mutually exclusive with the
- * TYPE_QUADRANT_ROTATION flag.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #getType
- */
- public static final int TYPE_GENERAL_ROTATION = 16;
-
- /**
- * This constant is a bit mask for any of the rotation flag bits.
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- */
- public static final int TYPE_MASK_ROTATION = (TYPE_QUADRANT_ROTATION |
- TYPE_GENERAL_ROTATION);
-
- /**
- * This constant indicates that the transform defined by this object
- * performs an arbitrary conversion of the input coordinates.
- * If this transform can be classified by any of the above constants,
- * the type will either be the constant TYPE_IDENTITY or a
- * combination of the appropriate flag bits for the various coordinate
- * conversions that this transform performs.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #getType
- */
- public static final int TYPE_GENERAL_TRANSFORM = 32;
-
- /**
- * This constant is used for the internal state variable to indicate
- * that no calculations need to be performed and that the source
- * coordinates only need to be copied to their destinations to
- * complete the transformation equation of this transform.
- * @see #APPLY_TRANSLATE
- * @see #APPLY_SCALE
- * @see #APPLY_SHEAR
- * @see #state
- */
- static final int APPLY_IDENTITY = 0;
-
- /**
- * This constant is used for the internal state variable to indicate
- * that the translation components of the matrix (m02 and m12) need
- * to be added to complete the transformation equation of this transform.
- * @see #APPLY_IDENTITY
- * @see #APPLY_SCALE
- * @see #APPLY_SHEAR
- * @see #state
- */
- static final int APPLY_TRANSLATE = 1;
-
- /**
- * This constant is used for the internal state variable to indicate
- * that the scaling components of the matrix (m00 and m11) need
- * to be factored in to complete the transformation equation of
- * this transform. If the APPLY_SHEAR bit is also set then it
- * indicates that the scaling components are not both 0.0. If the
- * APPLY_SHEAR bit is not also set then it indicates that the
- * scaling components are not both 1.0. If neither the APPLY_SHEAR
- * nor the APPLY_SCALE bits are set then the scaling components
- * are both 1.0, which means that the x and y components contribute
- * to the transformed coordinate, but they are not multiplied by
- * any scaling factor.
- * @see #APPLY_IDENTITY
- * @see #APPLY_TRANSLATE
- * @see #APPLY_SHEAR
- * @see #state
- */
- static final int APPLY_SCALE = 2;
-
- /**
- * This constant is used for the internal state variable to indicate
- * that the shearing components of the matrix (m01 and m10) need
- * to be factored in to complete the transformation equation of this
- * transform. The presence of this bit in the state variable changes
- * the interpretation of the APPLY_SCALE bit as indicated in its
- * documentation.
- * @see #APPLY_IDENTITY
- * @see #APPLY_TRANSLATE
- * @see #APPLY_SCALE
- * @see #state
- */
- static final int APPLY_SHEAR = 4;
-
- /*
- * For methods which combine together the state of two separate
- * transforms and dispatch based upon the combination, these constants
- * specify how far to shift one of the states so that the two states
- * are mutually non-interfering and provide constants for testing the
- * bits of the shifted (HI) state. The methods in this class use
- * the convention that the state of "this" transform is unshifted and
- * the state of the "other" or "argument" transform is shifted (HI).
- */
- private static final int HI_SHIFT = 3;
- private static final int HI_IDENTITY = APPLY_IDENTITY << HI_SHIFT;
- private static final int HI_TRANSLATE = APPLY_TRANSLATE << HI_SHIFT;
- private static final int HI_SCALE = APPLY_SCALE << HI_SHIFT;
- private static final int HI_SHEAR = APPLY_SHEAR << HI_SHIFT;
-
- /**
- * The X coordinate scaling element of the 3x3
- * affine transformation matrix.
- *
- * @serial
- */
- double m00;
-
- /**
- * The Y coordinate shearing element of the 3x3
- * affine transformation matrix.
- *
- * @serial
- */
- double m10;
-
- /**
- * The X coordinate shearing element of the 3x3
- * affine transformation matrix.
- *
- * @serial
- */
- double m01;
-
- /**
- * The Y coordinate scaling element of the 3x3
- * affine transformation matrix.
- *
- * @serial
- */
- double m11;
-
- /**
- * The X coordinate of the translation element of the
- * 3x3 affine transformation matrix.
- *
- * @serial
- */
- double m02;
-
- /**
- * The Y coordinate of the translation element of the
- * 3x3 affine transformation matrix.
- *
- * @serial
- */
- double m12;
-
- /**
- * This field keeps track of which components of the matrix need to
- * be applied when performing a transformation.
- * @see #APPLY_IDENTITY
- * @see #APPLY_TRANSLATE
- * @see #APPLY_SCALE
- * @see #APPLY_SHEAR
- */
- transient int state;
-
- /**
- * This field caches the current transformation type of the matrix.
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_FLIP
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- * @see #TYPE_UNKNOWN
- * @see #getType
- */
- private transient int type;
-
- private AffineTransform(double m00, double m10,
- double m01, double m11,
- double m02, double m12,
- int state) {
- this.m00 = m00;
- this.m10 = m10;
- this.m01 = m01;
- this.m11 = m11;
- this.m02 = m02;
- this.m12 = m12;
- this.state = state;
- this.type = TYPE_UNKNOWN;
- }
-
- /**
- * Constructs a new <code>AffineTransform</code> representing the
- * Identity transformation.
- */
- public AffineTransform() {
- m00 = m11 = 1.0;
- // m01 = m10 = m02 = m12 = 0.0; /* Not needed. */
- // state = APPLY_IDENTITY; /* Not needed. */
- // type = TYPE_IDENTITY; /* Not needed. */
- }
-
- /**
- * Constructs a new <code>AffineTransform</code> that is a copy of
- * the specified <code>AffineTransform</code> object.
- * @param Tx the <code>AffineTransform</code> object to copy
- */
- public AffineTransform(AffineTransform Tx) {
- this.m00 = Tx.m00;
- this.m10 = Tx.m10;
- this.m01 = Tx.m01;
- this.m11 = Tx.m11;
- this.m02 = Tx.m02;
- this.m12 = Tx.m12;
- this.state = Tx.state;
- this.type = Tx.type;
- }
-
- /**
- * Constructs a new <code>AffineTransform</code> from 6 floating point
- * values representing the 6 specifiable entries of the 3x3
- * transformation matrix.
- * @param m00, m01, m02, m10, m11, m12 the
- * 6 floating point values that compose the 3x3 transformation matrix
- */
- public AffineTransform(float m00, float m10,
- float m01, float m11,
- float m02, float m12) {
- this.m00 = m00;
- this.m10 = m10;
- this.m01 = m01;
- this.m11 = m11;
- this.m02 = m02;
- this.m12 = m12;
- updateState();
- }
-
- /**
- * Constructs a new <code>AffineTransform</code> from an array of
- * floating point values representing either the 4 non-translation
- * enries or the 6 specifiable entries of the 3x3 transformation
- * matrix. The values are retrieved from the array as
- * { m00 m10 m01 m11 [m02 m12]}.
- * @param flatmatrix the float array containing the values to be set
- * in the new <code>AffineTransform</code> object. The length of the
- * array is assumed to be at least 4. If the length of the array is
- * less than 6, only the first 4 values are taken. If the length of
- * the array is greater than 6, the first 6 values are taken.
- */
- public AffineTransform(float[] flatmatrix) {
- m00 = flatmatrix[0];
- m10 = flatmatrix[1];
- m01 = flatmatrix[2];
- m11 = flatmatrix[3];
- if (flatmatrix.length > 5) {
- m02 = flatmatrix[4];
- m12 = flatmatrix[5];
- }
- updateState();
- }
-
- /**
- * Constructs a new <code>AffineTransform</code> from 6 double
- * precision values representing the 6 specifiable entries of the 3x3
- * transformation matrix.
- * @param m00, m01, m02, m10, m11, m12 the
- * 6 floating point values that compose the 3x3 transformation matrix
- */
- public AffineTransform(double m00, double m10,
- double m01, double m11,
- double m02, double m12) {
- this.m00 = m00;
- this.m10 = m10;
- this.m01 = m01;
- this.m11 = m11;
- this.m02 = m02;
- this.m12 = m12;
- updateState();
- }
-
- /**
- * Constructs a new <code>AffineTransform</code> from an array of
- * double precision values representing either the 4 non-translation
- * entries or the 6 specifiable entries of the 3x3 transformation
- * matrix. The values are retrieved from the array as
- * { m00 m10 m01 m11 [m02 m12]}.
- * @param flatmatrix the double array containing the values to be set
- * in the new <code>AffineTransform</code> object. The length of the
- * array is assumed to be at least 4. If the length of the array is
- * less than 6, only the first 4 values are taken. If the length of
- * the array is greater than 6, the first 6 values are taken.
- */
- public AffineTransform(double[] flatmatrix) {
- m00 = flatmatrix[0];
- m10 = flatmatrix[1];
- m01 = flatmatrix[2];
- m11 = flatmatrix[3];
- if (flatmatrix.length > 5) {
- m02 = flatmatrix[4];
- m12 = flatmatrix[5];
- }
- updateState();
- }
-
- /**
- * Returns a transform representing a translation transformation.
- * The matrix representing the returned transform is:
- * <pre>
- * [ 1 0 tx ]
- * [ 0 1 ty ]
- * [ 0 0 1 ]
- * </pre>
- * @param tx the distance by which coordinates are translated in the
- * X axis direction
- * @param ty the distance by which coordinates are translated in the
- * Y axis direction
- * @return an <code>AffineTransform</code> object that represents a
- * translation transformation, created with the specified vector.
- */
- public static AffineTransform getTranslateInstance(double tx, double ty) {
- AffineTransform Tx = new AffineTransform();
- Tx.setToTranslation(tx, ty);
- return Tx;
- }
-
- /**
- * Returns a transform representing a rotation transformation.
- * The matrix representing the returned transform is:
- * <pre>
- * [ cos(theta) -sin(theta) 0 ]
- * [ sin(theta) cos(theta) 0 ]
- * [ 0 0 1 ]
- * </pre>
- * Rotating with a positive angle theta rotates points on the positive
- * x axis toward the positive y axis.
- * @param theta the angle of rotation in radians
- * @return an <code>AffineTransform</code> object that is a rotation
- * transformation, created with the specified angle of rotation.
- */
- public static AffineTransform getRotateInstance(double theta) {
- AffineTransform Tx = new AffineTransform();
- Tx.setToRotation(theta);
- return Tx;
- }
-
- /**
- * Returns a transform that rotates coordinates around an anchor point.
- * This operation is equivalent to translating the coordinates so
- * that the anchor point is at the origin (S1), then rotating them
- * about the new origin (S2), and finally translating so that the
- * intermediate origin is restored to the coordinates of the original
- * anchor point (S3).
- * <p>
- * This operation is equivalent to the following sequence of calls:
- * <pre>
- * AffineTransform Tx = new AffineTransform();
- * Tx.setToTranslation(x, y); // S3: final translation
- * Tx.rotate(theta); // S2: rotate around anchor
- * Tx.translate(-x, -y); // S1: translate anchor to origin
- * </pre>
- * The matrix representing the returned transform is:
- * <pre>
- * [ cos(theta) -sin(theta) x-x*cos+y*sin ]
- * [ sin(theta) cos(theta) y-x*sin-y*cos ]
- * [ 0 0 1 ]
- * </pre>
- * Rotating with a positive angle theta rotates points on the positive
- * x axis toward the positive y axis.
- * @param theta the angle of rotation in radians
- * @param x, y the coordinates of the anchor point of the
- * rotation
- * @return an <code>AffineTransform</code> object that rotates
- * coordinates around the specified point by the specified angle of
- * rotation.
- */
- public static AffineTransform getRotateInstance(double theta,
- double x, double y) {
- AffineTransform Tx = new AffineTransform();
- Tx.setToRotation(theta, x, y);
- return Tx;
- }
-
- /**
- * Returns a transform representing a scaling transformation.
- * The matrix representing the returned transform is:
- * <pre>
- * [ sx 0 0 ]
- * [ 0 sy 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param sx the factor by which coordinates are scaled along the
- * X axis direction
- * @param sy the factor by which coordinates are scaled along the
- * Y axis direction
- * @return an <code>AffineTransform</code> object that scales
- * coordinates by the specified factors.
- */
- public static AffineTransform getScaleInstance(double sx, double sy) {
- AffineTransform Tx = new AffineTransform();
- Tx.setToScale(sx, sy);
- return Tx;
- }
-
- /**
- * Returns a transform representing a shearing transformation.
- * The matrix representing the returned transform is:
- * <pre>
- * [ 1 shx 0 ]
- * [ shy 1 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param shx the multiplier by which coordinates are shifted in the
- * direction of the positive X axis as a factor of their Y coordinate
- * @param shy the multiplier by which coordinates are shifted in the
- * direction of the positive Y axis as a factor of their X coordinate
- * @return an <code>AffineTransform</code> object that shears
- * coordinates by the specified multipliers.
- */
- public static AffineTransform getShearInstance(double shx, double shy) {
- AffineTransform Tx = new AffineTransform();
- Tx.setToShear(shx, shy);
- return Tx;
- }
-
- /**
- * Retrieves the flag bits describing the conversion properties of
- * this transform.
- * The return value is either one of the constants TYPE_IDENTITY
- * or TYPE_GENERAL_TRANSFORM, or a combination of the
- * appriopriate flag bits.
- * A valid combination of flag bits is an exclusive OR operation
- * that can combine
- * the TYPE_TRANSLATION flag bit
- * in addition to either of the
- * TYPE_UNIFORM_SCALE or TYPE_GENERAL_SCALE flag bits
- * as well as either of the
- * TYPE_QUADRANT_ROTATION or TYPE_GENERAL_ROTATION flag bits.
- * @return the OR combination of any of the indicated flags that
- * apply to this transform
- * @see #TYPE_IDENTITY
- * @see #TYPE_TRANSLATION
- * @see #TYPE_UNIFORM_SCALE
- * @see #TYPE_GENERAL_SCALE
- * @see #TYPE_QUADRANT_ROTATION
- * @see #TYPE_GENERAL_ROTATION
- * @see #TYPE_GENERAL_TRANSFORM
- */
- public int getType() {
- if (type == TYPE_UNKNOWN) {
- calculateType();
- }
- return type;
- }
-
- /**
- * This is the utility function to calculate the flag bits when
- * they have not been cached.
- * @see #getType
- */
- private void calculateType() {
- int ret = TYPE_IDENTITY;
- boolean sgn0, sgn1;
- double M0, M1, M2, M3;
- updateState();
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- ret = TYPE_TRANSLATION;
- /* NOBREAK */
- case (APPLY_SHEAR | APPLY_SCALE):
- if ((M0 = m00) * (M2 = m01) + (M3 = m10) * (M1 = m11) != 0) {
- // Transformed unit vectors are not perpendicular...
- this.type = TYPE_GENERAL_TRANSFORM;
- return;
- }
- sgn0 = (M0 >= 0.0);
- sgn1 = (M1 >= 0.0);
- if (sgn0 == sgn1) {
- // sgn(M0) == sgn(M1) therefore sgn(M2) == -sgn(M3)
- // This is the "unflipped" (right-handed) state
- if (M0 != M1 || M2 != -M3) {
- ret |= (TYPE_GENERAL_ROTATION | TYPE_GENERAL_SCALE);
- } else if (M0 * M1 - M2 * M3 != 1.0) {
- ret |= (TYPE_GENERAL_ROTATION | TYPE_UNIFORM_SCALE);
- } else {
- ret |= TYPE_GENERAL_ROTATION;
- }
- } else {
- // sgn(M0) == -sgn(M1) therefore sgn(M2) == sgn(M3)
- // This is the "flipped" (left-handed) state
- if (M0 != -M1 || M2 != M3) {
- ret |= (TYPE_GENERAL_ROTATION |
- TYPE_FLIP |
- TYPE_GENERAL_SCALE);
- } else if (M0 * M1 - M2 * M3 != 1.0) {
- ret |= (TYPE_GENERAL_ROTATION |
- TYPE_FLIP |
- TYPE_UNIFORM_SCALE);
- } else {
- ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP);
- }
- }
- break;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- ret = TYPE_TRANSLATION;
- /* NOBREAK */
- case (APPLY_SHEAR):
- sgn0 = ((M0 = m01) >= 0.0);
- sgn1 = ((M1 = m10) >= 0.0);
- if (sgn0 != sgn1) {
- // Different signs - simple 90 degree rotation
- if (M0 != -M1) {
- ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
- } else if (M0 != 1.0 && M0 != -1.0) {
- ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
- } else {
- ret |= TYPE_QUADRANT_ROTATION;
- }
- } else {
- // Same signs - 90 degree rotation plus an axis flip too
- if (M0 == M1) {
- ret |= (TYPE_QUADRANT_ROTATION |
- TYPE_FLIP |
- TYPE_UNIFORM_SCALE);
- } else {
- ret |= (TYPE_QUADRANT_ROTATION |
- TYPE_FLIP |
- TYPE_GENERAL_SCALE);
- }
- }
- break;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- ret = TYPE_TRANSLATION;
- /* NOBREAK */
- case (APPLY_SCALE):
- sgn0 = ((M0 = m00) >= 0.0);
- sgn1 = ((M1 = m11) >= 0.0);
- if (sgn0 == sgn1) {
- if (sgn0) {
- // Both scaling factors non-negative - simple scale
- // Note: APPLY_SCALE implies M0, M1 are not both 1
- if (M0 == M1) {
- ret |= TYPE_UNIFORM_SCALE;
- } else {
- ret |= TYPE_GENERAL_SCALE;
- }
- } else {
- // Both scaling factors negative - 180 degree rotation
- if (M0 != M1) {
- ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
- } else if (M0 != -1.0) {
- ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
- } else {
- ret |= TYPE_QUADRANT_ROTATION;
- }
- }
- } else {
- // Scaling factor signs different - flip about some axis
- if (M0 == -M1) {
- if (M0 == 1.0 || M0 == -1.0) {
- ret |= TYPE_FLIP;
- } else {
- ret |= (TYPE_FLIP | TYPE_UNIFORM_SCALE);
- }
- } else {
- ret |= (TYPE_FLIP | TYPE_GENERAL_SCALE);
- }
- }
- break;
- case (APPLY_TRANSLATE):
- ret = TYPE_TRANSLATION;
- break;
- case (APPLY_IDENTITY):
- break;
- }
- this.type = ret;
- }
-
- /**
- * Returns the determinant of the matrix representation of the transform.
- * The determinant is useful both to determine if the transform can
- * be inverted and to get a single value representing the
- * combined X and Y scaling of the transform.
- * <p>
- * If the determinant is non-zero, then this transform is
- * invertible and the various methods that depend on the inverse
- * transform do not need to throw a
- * {@link NoninvertibleTransformException}.
- * If the determinant is zero then this transform can not be
- * inverted since the transform maps all input coordinates onto
- * a line or a point.
- * If the determinant is near enough to zero then inverse transform
- * operations might not carry enough precision to produce meaningful
- * results.
- * <p>
- * If this transform represents a uniform scale, as indicated by
- * the <code>getType</code> method then the determinant also
- * represents the square of the uniform scale factor by which all of
- * the points are expanded from or contracted towards the origin.
- * If this transform represents a non-uniform scale or more general
- * transform then the determinant is not likely to represent a
- * value useful for any purpose other than determining if inverse
- * transforms are possible.
- * <p>
- * Mathematically, the determinant is calculated using the formula:
- * <pre>
- * | m00 m01 m02 |
- * | m10 m11 m12 | = m00 * m11 - m01 * m10
- * | 0 0 1 |
- * </pre>
- *
- * @return the determinant of the matrix used to transform the
- * coordinates.
- * @see #getType
- * @see #createInverse
- * @see #inverseTransform
- * @see #TYPE_UNIFORM_SCALE
- */
- public double getDeterminant() {
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SHEAR | APPLY_SCALE):
- return m00 * m11 - m01 * m10;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- case (APPLY_SHEAR):
- return -(m01 * m10);
- case (APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SCALE):
- return m00 * m11;
- case (APPLY_TRANSLATE):
- case (APPLY_IDENTITY):
- return 1.0;
- }
- }
-
- /**
- * Manually recalculates the state of the transform when the matrix
- * changes too much to predict the effects on the state.
- * The following table specifies what the various settings of the
- * state field say about the values of the corresponding matrix
- * element fields.
- * Note that the rules governing the SCALE fields are slightly
- * different depending on whether the SHEAR flag is also set.
- * <pre>
- * SCALE SHEAR TRANSLATE
- * m00/m11 m01/m10 m02/m12
- *
- * IDENTITY 1.0 0.0 0.0
- * TRANSLATE (TR) 1.0 0.0 not both 0.0
- * SCALE (SC) not both 1.0 0.0 0.0
- * TR | SC not both 1.0 0.0 not both 0.0
- * SHEAR (SH) 0.0 not both 0.0 0.0
- * TR | SH 0.0 not both 0.0 not both 0.0
- * SC | SH not both 0.0 not both 0.0 0.0
- * TR | SC | SH not both 0.0 not both 0.0 not both 0.0
- * </pre>
- */
- void updateState() {
- if (m01 == 0.0 && m10 == 0.0) {
- if (m00 == 1.0 && m11 == 1.0) {
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- } else {
- state = APPLY_TRANSLATE;
- type = TYPE_TRANSLATION;
- }
- } else {
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_SCALE;
- type = TYPE_UNKNOWN;
- } else {
- state = (APPLY_SCALE | APPLY_TRANSLATE);
- type = TYPE_UNKNOWN;
- }
- }
- } else {
- if (m00 == 0.0 && m11 == 0.0) {
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_SHEAR;
- type = TYPE_UNKNOWN;
- } else {
- state = (APPLY_SHEAR | APPLY_TRANSLATE);
- type = TYPE_UNKNOWN;
- }
- } else {
- if (m02 == 0.0 && m12 == 0.0) {
- state = (APPLY_SHEAR | APPLY_SCALE);
- type = TYPE_UNKNOWN;
- } else {
- state = (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE);
- type = TYPE_UNKNOWN;
- }
- }
- }
- }
-
- /*
- * Convenience method used internally to throw exceptions when
- * a case was forgotten in a switch statement.
- */
- private void stateError() {
- throw new InternalError("missing case in transform state switch");
- }
-
- /**
- * Retrieves the 6 specifiable values in the 3x3 affine transformation
- * matrix and places them into an array of double precisions values.
- * The values are stored in the array as
- * { m00 m10 m01 m11 m02 m12 }.
- * An array of 4 doubles can also be specified, in which case only the
- * first four elements representing the non-transform
- * parts of the array are retrieved and the values are stored into
- * the array as { m00 m10 m01 m11 }
- * @param flatmatrix the double array used to store the returned
- * values.
- * @see #getScaleX
- * @see #getScaleY
- * @see #getShearX
- * @see #getShearY
- * @see #getTranslateX
- * @see #getTranslateY
- */
- public void getMatrix(double[] flatmatrix) {
- flatmatrix[0] = m00;
- flatmatrix[1] = m10;
- flatmatrix[2] = m01;
- flatmatrix[3] = m11;
- if (flatmatrix.length > 5) {
- flatmatrix[4] = m02;
- flatmatrix[5] = m12;
- }
- }
-
- /**
- * Returns the X coordinate scaling element (m00) of the 3x3
- * affine transformation matrix.
- * @return a double value that is the X coordinate of the scaling
- * element of the affine transformation matrix.
- * @see #getMatrix
- */
- public double getScaleX() {
- return m00;
- }
-
- /**
- * Returns the Y coordinate scaling element (m11) of the 3x3
- * affine transformation matrix.
- * @return a double value that is the Y coordinate of the scaling
- * element of the affine transformation matrix.
- * @see #getMatrix
- */
- public double getScaleY() {
- return m11;
- }
-
- /**
- * Returns the X coordinate shearing element (m01) of the 3x3
- * affine transformation matrix.
- * @return a double value that is the X coordinate of the shearing
- * element of the affine transformation matrix.
- * @see #getMatrix
- */
- public double getShearX() {
- return m01;
- }
-
- /**
- * Returns the Y coordinate shearing element (m10) of the 3x3
- * affine transformation matrix.
- * @return a double value that is the Y coordinate of the shearing
- * element of the affine transformation matrix.
- * @see #getMatrix
- */
- public double getShearY() {
- return m10;
- }
-
- /**
- * Returns the X coordinate of the translation element (m02) of the
- * 3x3 affine transformation matrix.
- * @return a double value that is the X coordinate of the translation
- * element of the affine transformation matrix.
- * @see #getMatrix
- */
- public double getTranslateX() {
- return m02;
- }
-
- /**
- * Returns the Y coordinate of the translation element (m12) of the
- * 3x3 affine transformation matrix.
- * @return a double value that is the Y coordinate of the translation
- * element of the affine transformation matrix.
- * @see #getMatrix
- */
- public double getTranslateY() {
- return m12;
- }
-
- /**
- * Concatenates this transform with a translation transformation.
- * This is equivalent to calling concatenate(T), where T is an
- * <code>AffineTransform</code> represented by the following matrix:
- * <pre>
- * [ 1 0 tx ]
- * [ 0 1 ty ]
- * [ 0 0 1 ]
- * </pre>
- * @param tx the distance by which coordinates are translated in the
- * X axis direction
- * @param ty the distance by which coordinates are translated in the
- * Y axis direction
- */
- public void translate(double tx, double ty) {
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- m02 = tx * m00 + ty * m01 + m02;
- m12 = tx * m10 + ty * m11 + m12;
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_SHEAR | APPLY_SCALE;
- if (type != TYPE_UNKNOWN) {
- type -= TYPE_TRANSLATION;
- }
- }
- return;
- case (APPLY_SHEAR | APPLY_SCALE):
- m02 = tx * m00 + ty * m01;
- m12 = tx * m10 + ty * m11;
- if (m02 != 0.0 || m12 != 0.0) {
- state = APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE;
- type |= TYPE_TRANSLATION;
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- m02 = ty * m01 + m02;
- m12 = tx * m10 + m12;
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_SHEAR;
- if (type != TYPE_UNKNOWN) {
- type -= TYPE_TRANSLATION;
- }
- }
- return;
- case (APPLY_SHEAR):
- m02 = ty * m01;
- m12 = tx * m10;
- if (m02 != 0.0 || m12 != 0.0) {
- state = APPLY_SHEAR | APPLY_TRANSLATE;
- type |= TYPE_TRANSLATION;
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- m02 = tx * m00 + m02;
- m12 = ty * m11 + m12;
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_SCALE;
- if (type != TYPE_UNKNOWN) {
- type -= TYPE_TRANSLATION;
- }
- }
- return;
- case (APPLY_SCALE):
- m02 = tx * m00;
- m12 = ty * m11;
- if (m02 != 0.0 || m12 != 0.0) {
- state = APPLY_SCALE | APPLY_TRANSLATE;
- type |= TYPE_TRANSLATION;
- }
- return;
- case (APPLY_TRANSLATE):
- m02 = tx + m02;
- m12 = ty + m12;
- if (m02 == 0.0 && m12 == 0.0) {
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- }
- return;
- case (APPLY_IDENTITY):
- m02 = tx;
- m12 = ty;
- if (tx != 0.0 || ty != 0.0) {
- state = APPLY_TRANSLATE;
- type = TYPE_TRANSLATION;
- }
- return;
- }
- }
-
- /**
- * Concatenates this transform with a rotation transformation.
- * This is equivalent to calling concatenate(R), where R is an
- * <code>AffineTransform</code> represented by the following matrix:
- * <pre>
- * [ cos(theta) -sin(theta) 0 ]
- * [ sin(theta) cos(theta) 0 ]
- * [ 0 0 1 ]
- * </pre>
- * Rotating with a positive angle theta rotates points on the positive
- * x axis toward the positive y axis.
- * @param theta the angle of rotation in radians
- */
- public void rotate(double theta) {
- double sin = Math.sin(theta);
- double cos = Math.cos(theta);
- if (Math.abs(sin) < 1E-15) {
- if (cos < 0.0) {
- m00 = -m00;
- m11 = -m11;
- int state = this.state;
- if ((state & (APPLY_SHEAR)) != 0) {
- // If there was a shear, then this rotation has no
- // effect on the state.
- m01 = -m01;
- m10 = -m10;
- } else {
- // No shear means the SCALE state may toggle when
- // m00 and m11 are negated.
- if (m00 == 1.0 && m11 == 1.0) {
- this.state = state & ~APPLY_SCALE;
- } else {
- this.state = state | APPLY_SCALE;
- }
- }
- type = TYPE_UNKNOWN;
- }
- return;
- }
- if (Math.abs(cos) < 1E-15) {
- if (sin < 0.0) {
- double M0 = m00;
- m00 = -m01;
- m01 = M0;
- M0 = m10;
- m10 = -m11;
- m11 = M0;
- } else {
- double M0 = m00;
- m00 = m01;
- m01 = -M0;
- M0 = m10;
- m10 = m11;
- m11 = -M0;
- }
- int state = rot90conversion[this.state];
- if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
- m00 == 1.0 && m11 == 1.0)
- {
- state -= APPLY_SCALE;
- }
- this.state = state;
- type = TYPE_UNKNOWN;
- return;
- }
- double M0, M1;
- M0 = m00;
- M1 = m01;
- m00 = cos * M0 + sin * M1;
- m01 = -sin * M0 + cos * M1;
- M0 = m10;
- M1 = m11;
- m10 = cos * M0 + sin * M1;
- m11 = -sin * M0 + cos * M1;
- updateState();
- }
- private static int rot90conversion[] = {
- APPLY_SHEAR, APPLY_SHEAR | APPLY_TRANSLATE,
- APPLY_SHEAR, APPLY_SHEAR | APPLY_TRANSLATE,
- APPLY_SCALE, APPLY_SCALE | APPLY_TRANSLATE,
- APPLY_SHEAR | APPLY_SCALE,
- APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE,
- };
-
- /**
- * Concatenates this transform with a transform that rotates
- * coordinates around an anchor point.
- * This operation is equivalent to translating the coordinates so
- * that the anchor point is at the origin (S1), then rotating them
- * about the new origin (S2), and finally translating so that the
- * intermediate origin is restored to the coordinates of the original
- * anchor point (S3).
- * <p>
- * This operation is equivalent to the following sequence of calls:
- * <pre>
- * translate(x, y); // S3: final translation
- * rotate(theta); // S2: rotate around anchor
- * translate(-x, -y); // S1: translate anchor to origin
- * </pre>
- * Rotating with a positive angle theta rotates points on the positive
- * x axis toward the positive y axis.
- * @param theta the angle of rotation in radians
- * @param x, y the coordinates of the anchor point of the
- * rotation
- */
- public void rotate(double theta, double x, double y) {
- // REMIND: Simple for now - optimize later
- translate(x, y);
- rotate(theta);
- translate(-x, -y);
- }
-
- /**
- * Concatenates this transform with a scaling transformation.
- * This is equivalent to calling concatenate(S), where S is an
- * <code>AffineTransform</code> represented by the following matrix:
- * <pre>
- * [ sx 0 0 ]
- * [ 0 sy 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param sx the factor by which coordinates are scaled along the
- * X axis direction
- * @param sy the factor by which coordinates are scaled along the
- * Y axis direction
- */
- public void scale(double sx, double sy) {
- int state = this.state;
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SHEAR | APPLY_SCALE):
- m00 *= sx;
- m11 *= sy;
- /* NOBREAK */
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- case (APPLY_SHEAR):
- m01 *= sy;
- m10 *= sx;
- if (m01 == 0 && m10 == 0) {
- this.state = state - APPLY_SHEAR;
- // REMIND: Is it possible for m00 and m11 to be both 1.0?
- }
- this.type = TYPE_UNKNOWN;
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SCALE):
- m00 *= sx;
- m11 *= sy;
- if (m00 == 1.0 && m11 == 1.0) {
- this.state = (state &= APPLY_TRANSLATE);
- this.type = (state == APPLY_IDENTITY
- ? TYPE_IDENTITY
- : TYPE_TRANSLATION);
- } else {
- this.type = TYPE_UNKNOWN;
- }
- return;
- case (APPLY_TRANSLATE):
- case (APPLY_IDENTITY):
- m00 = sx;
- m11 = sy;
- if (sx != 1.0 || sy != 1.0) {
- this.state = state | APPLY_SCALE;
- this.type = TYPE_UNKNOWN;
- }
- return;
- }
- }
-
- /**
- * Concatenates this transform with a shearing transformation.
- * This is equivalent to calling concatenate(SH), where SH is an
- * <code>AffineTransform</code> represented by the following matrix:
- * <pre>
- * [ 1 shx 0 ]
- * [ shy 1 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param shx the multiplier by which coordinates are shifted in the
- * direction of the positive X axis as a factor of their Y coordinate
- * @param shy the multiplier by which coordinates are shifted in the
- * direction of the positive Y axis as a factor of their X coordinate
- */
- public void shear(double shx, double shy) {
- int state = this.state;
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SHEAR | APPLY_SCALE):
- double M0, M1;
- M0 = m00;
- M1 = m01;
- m00 = M0 + M1 * shy;
- m01 = M0 * shx + M1;
-
- M0 = m10;
- M1 = m11;
- m10 = M0 + M1 * shy;
- m11 = M0 * shx + M1;
- updateState();
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- case (APPLY_SHEAR):
- m00 = m01 * shy;
- m11 = m10 * shx;
- if (m00 != 0.0 || m11 != 0.0) {
- this.state = state | APPLY_SCALE;
- }
- this.type = TYPE_UNKNOWN;
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SCALE):
- m01 = m00 * shx;
- m10 = m11 * shy;
- if (m01 != 0.0 || m10 != 0.0) {
- this.state = state | APPLY_SHEAR;
- }
- this.type = TYPE_UNKNOWN;
- return;
- case (APPLY_TRANSLATE):
- case (APPLY_IDENTITY):
- m01 = shx;
- m10 = shy;
- if (m01 != 0.0 || m10 != 0.0) {
- this.state = state | APPLY_SCALE | APPLY_SHEAR;
- this.type = TYPE_UNKNOWN;
- }
- return;
- }
- }
-
- /**
- * Resets this transform to the Identity transform.
- */
- public void setToIdentity() {
- m00 = m11 = 1.0;
- m10 = m01 = m02 = m12 = 0.0;
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- }
-
- /**
- * Sets this transform to a translation transformation.
- * The matrix representing this transform becomes:
- * <pre>
- * [ 1 0 tx ]
- * [ 0 1 ty ]
- * [ 0 0 1 ]
- * </pre>
- * @param tx the distance by which coordinates are translated in the
- * X axis direction
- * @param ty the distance by which coordinates are translated in the
- * Y axis direction
- */
- public void setToTranslation(double tx, double ty) {
- m00 = 1.0;
- m10 = 0.0;
- m01 = 0.0;
- m11 = 1.0;
- m02 = tx;
- m12 = ty;
- if (tx != 0.0 || ty != 0.0) {
- state = APPLY_TRANSLATE;
- type = TYPE_TRANSLATION;
- } else {
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- }
- }
-
- /**
- * Sets this transform to a rotation transformation.
- * The matrix representing this transform becomes:
- * <pre>
- * [ cos(theta) -sin(theta) 0 ]
- * [ sin(theta) cos(theta) 0 ]
- * [ 0 0 1 ]
- * </pre>
- * Rotating with a positive angle theta rotates points on the positive
- * x axis toward the positive y axis.
- * @param theta the angle of rotation in radians
- */
- public void setToRotation(double theta) {
- m02 = 0.0;
- m12 = 0.0;
- double sin = Math.sin(theta);
- double cos = Math.cos(theta);
- if (Math.abs(sin) < 1E-15) {
- m01 = m10 = 0.0;
- if (cos < 0) {
- m00 = m11 = -1.0;
- state = APPLY_SCALE;
- type = TYPE_QUADRANT_ROTATION;
- } else {
- m00 = m11 = 1.0;
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- }
- return;
- }
- if (Math.abs(cos) < 1E-15) {
- m00 = m11 = 0.0;
- if (sin < 0.0) {
- m01 = 1.0;
- m10 = -1.0;
- } else {
- m01 = -1.0;
- m10 = 1.0;
- }
- state = APPLY_SHEAR;
- type = TYPE_QUADRANT_ROTATION;
- return;
- }
- m00 = cos;
- m01 = -sin;
- m10 = sin;
- m11 = cos;
- state = APPLY_SHEAR | APPLY_SCALE;
- type = TYPE_GENERAL_ROTATION;
- return;
- }
-
- /**
- * Sets this transform to a translated rotation transformation.
- * This operation is equivalent to translating the coordinates so
- * that the anchor point is at the origin (S1), then rotating them
- * about the new origin (S2), and finally translating so that the
- * intermediate origin is restored to the coordinates of the original
- * anchor point (S3).
- * <p>
- * This operation is equivalent to the following sequence of calls:
- * <pre>
- * setToTranslation(x, y); // S3: final translation
- * rotate(theta); // S2: rotate around anchor
- * translate(-x, -y); // S1: translate anchor to origin
- * </pre>
- * The matrix representing this transform becomes:
- * <pre>
- * [ cos(theta) -sin(theta) x-x*cos+y*sin ]
- * [ sin(theta) cos(theta) y-x*sin-y*cos ]
- * [ 0 0 1 ]
- * </pre>
- * Rotating with a positive angle theta rotates points on the positive
- * x axis toward the positive y axis.
- * @param theta the angle of rotation in radians
- * @param x, y the coordinates of the anchor point of the
- * rotation
- */
- public void setToRotation(double theta, double x, double y) {
- setToRotation(theta);
- double sin = m10;
- double oneMinusCos = 1.0 - m00;
- m02 = x * oneMinusCos + y * sin;
- m12 = y * oneMinusCos - x * sin;
- if (m02 != 0.0 || m12 != 0.0) {
- state |= APPLY_TRANSLATE;
- type |= TYPE_TRANSLATION;
- }
- return;
- }
-
- /**
- * Sets this transform to a scaling transformation.
- * The matrix representing this transform becomes:
- * <pre>
- * [ sx 0 0 ]
- * [ 0 sy 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param sx the factor by which coordinates are scaled along the
- * X axis direction
- * @param sy the factor by which coordinates are scaled along the
- * Y axis direction
- */
- public void setToScale(double sx, double sy) {
- m00 = sx;
- m10 = 0.0;
- m01 = 0.0;
- m11 = sy;
- m02 = 0.0;
- m12 = 0.0;
- if (sx != 1.0 || sy != 1.0) {
- state = APPLY_SCALE;
- type = TYPE_UNKNOWN;
- } else {
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- }
- }
-
- /**
- * Sets this transform to a shearing transformation.
- * The matrix representing this transform becomes:
- * <pre>
- * [ 1 shx 0 ]
- * [ shy 1 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param shx the multiplier by which coordinates are shifted in the
- * direction of the positive X axis as a factor of their Y coordinate
- * @param shy the multiplier by which coordinates are shifted in the
- * direction of the positive Y axis as a factor of their X coordinate
- */
- public void setToShear(double shx, double shy) {
- m00 = 1.0;
- m01 = shx;
- m10 = shy;
- m11 = 1.0;
- m02 = 0.0;
- m12 = 0.0;
- if (shx != 0.0 || shy != 0.0) {
- state = (APPLY_SHEAR | APPLY_SCALE);
- type = TYPE_UNKNOWN;
- } else {
- state = APPLY_IDENTITY;
- type = TYPE_IDENTITY;
- }
- }
-
- /**
- * Sets this transform to a copy of the transform in the specified
- * <code>AffineTransform</code> object.
- * @param Tx the <code>AffineTransform</code> object from which to
- * copy the transform
- */
- public void setTransform(AffineTransform Tx) {
- this.m00 = Tx.m00;
- this.m10 = Tx.m10;
- this.m01 = Tx.m01;
- this.m11 = Tx.m11;
- this.m02 = Tx.m02;
- this.m12 = Tx.m12;
- this.state = Tx.state;
- this.type = Tx.type;
- }
-
- /**
- * Sets this transform to the matrix specified by the 6
- * double precision values.
- * @param m00, m01, m02, m10, m11, m12 the
- * 6 floating point values that compose the 3x3 transformation matrix
- */
- public void setTransform(double m00, double m10,
- double m01, double m11,
- double m02, double m12) {
- this.m00 = m00;
- this.m10 = m10;
- this.m01 = m01;
- this.m11 = m11;
- this.m02 = m02;
- this.m12 = m12;
- updateState();
- }
-
- /**
- * Concatenates an <code>AffineTransform</code> <code>Tx</code> to
- * this <code>AffineTransform</code> Cx in the most commonly useful
- * way to provide a new user space
- * that is mapped to the former user space by <code>Tx</code>.
- * Cx is updated to perform the combined transformation.
- * Transforming a point p by the updated transform Cx' is
- * equivalent to first transforming p by <code>Tx</code> and then
- * transforming the result by the original transform Cx like this:
- * Cx'(p) = Cx(Tx(p))
- * In matrix notation, if this transform Cx is
- * represented by the matrix [this] and <code>Tx</code> is represented
- * by the matrix [Tx] then this method does the following:
- * <pre>
- * [this] = [this] x [Tx]
- * </pre>
- * @param Tx the <code>AffineTransform</code> object to be
- * concatenated with this <code>AffineTransform</code> object.
- * @see #preConcatenate
- */
- public void concatenate(AffineTransform Tx) {
- double M0, M1;
- double T00, T01, T10, T11;
- double T02, T12;
- int mystate = state;
- int txstate = Tx.state;
- switch ((txstate << HI_SHIFT) | mystate) {
-
- /* ---------- Tx == IDENTITY cases ---------- */
- case (HI_IDENTITY | APPLY_IDENTITY):
- case (HI_IDENTITY | APPLY_TRANSLATE):
- case (HI_IDENTITY | APPLY_SCALE):
- case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_IDENTITY | APPLY_SHEAR):
- case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
- case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- return;
-
- /* ---------- this == IDENTITY cases ---------- */
- case (HI_SHEAR | HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
- m01 = Tx.m01;
- m10 = Tx.m10;
- /* NOBREAK */
- case (HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
- m00 = Tx.m00;
- m11 = Tx.m11;
- /* NOBREAK */
- case (HI_TRANSLATE | APPLY_IDENTITY):
- m02 = Tx.m02;
- m12 = Tx.m12;
- state = txstate;
- type = Tx.type;
- return;
- case (HI_SHEAR | HI_SCALE | APPLY_IDENTITY):
- m01 = Tx.m01;
- m10 = Tx.m10;
- /* NOBREAK */
- case (HI_SCALE | APPLY_IDENTITY):
- m00 = Tx.m00;
- m11 = Tx.m11;
- state = txstate;
- type = Tx.type;
- return;
- case (HI_SHEAR | HI_TRANSLATE | APPLY_IDENTITY):
- m02 = Tx.m02;
- m12 = Tx.m12;
- /* NOBREAK */
- case (HI_SHEAR | APPLY_IDENTITY):
- m01 = Tx.m01;
- m10 = Tx.m10;
- m00 = m11 = 0.0;
- state = txstate;
- type = Tx.type;
- return;
-
- /* ---------- Tx == TRANSLATE cases ---------- */
- case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
- case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_TRANSLATE | APPLY_SHEAR):
- case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_TRANSLATE | APPLY_SCALE):
- case (HI_TRANSLATE | APPLY_TRANSLATE):
- translate(Tx.m02, Tx.m12);
- return;
-
- /* ---------- Tx == SCALE cases ---------- */
- case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
- case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_SHEAR):
- case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_SCALE):
- case (HI_SCALE | APPLY_TRANSLATE):
- scale(Tx.m00, Tx.m11);
- return;
-
- /* ---------- Tx == SHEAR cases ---------- */
- case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
- T01 = Tx.m01; T10 = Tx.m10;
- M0 = m00;
- m00 = m01 * T10;
- m01 = M0 * T01;
- M0 = m10;
- m10 = m11 * T10;
- m11 = M0 * T01;
- type = TYPE_UNKNOWN;
- return;
- case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_SHEAR):
- m00 = m01 * Tx.m10;
- m01 = 0.0;
- m11 = m10 * Tx.m01;
- m10 = 0.0;
- state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
- type = TYPE_UNKNOWN;
- return;
- case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_SCALE):
- m01 = m00 * Tx.m01;
- m00 = 0.0;
- m10 = m11 * Tx.m10;
- m11 = 0.0;
- state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
- type = TYPE_UNKNOWN;
- return;
- case (HI_SHEAR | APPLY_TRANSLATE):
- m00 = 0.0;
- m01 = Tx.m01;
- m10 = Tx.m10;
- m11 = 0.0;
- state = APPLY_TRANSLATE | APPLY_SHEAR;
- type = TYPE_UNKNOWN;
- return;
- }
- // If Tx has more than one attribute, it is not worth optimizing
- // all of those cases...
- T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02;
- T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12;
- switch (mystate) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE):
- state = mystate | txstate;
- /* NOBREAK */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M0 = m00;
- M1 = m01;
- m00 = T00 * M0 + T10 * M1;
- m01 = T01 * M0 + T11 * M1;
- m02 += T02 * M0 + T12 * M1;
-
- M0 = m10;
- M1 = m11;
- m10 = T00 * M0 + T10 * M1;
- m11 = T01 * M0 + T11 * M1;
- m12 += T02 * M0 + T12 * M1;
- type = TYPE_UNKNOWN;
- return;
-
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- case (APPLY_SHEAR):
- M0 = m01;
- m00 = T10 * M0;
- m01 = T11 * M0;
- m02 += T12 * M0;
-
- M0 = m10;
- m10 = T00 * M0;
- m11 = T01 * M0;
- m12 += T02 * M0;
- break;
-
- case (APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SCALE):
- M0 = m00;
- m00 = T00 * M0;
- m01 = T01 * M0;
- m02 += T02 * M0;
-
- M0 = m11;
- m10 = T10 * M0;
- m11 = T11 * M0;
- m12 += T12 * M0;
- break;
-
- case (APPLY_TRANSLATE):
- m00 = T00;
- m01 = T01;
- m02 += T02;
-
- m10 = T10;
- m11 = T11;
- m12 += T12;
- state = txstate | APPLY_TRANSLATE;
- type = TYPE_UNKNOWN;
- return;
- }
- updateState();
- }
-
- /**
- * Concatenates an <code>AffineTransform</code> <code>Tx</code> to
- * this <code>AffineTransform</code> Cx
- * in a less commonly used way such that <code>Tx</code> modifies the
- * coordinate transformation relative to the absolute pixel
- * space rather than relative to the existing user space.
- * Cx is updated to perform the combined transformation.
- * Transforming a point p by the updated transform Cx' is
- * equivalent to first transforming p by the original transform
- * Cx and then transforming the result by
- * <code>Tx</code> like this:
- * Cx'(p) = Tx(Cx(p))
- * In matrix notation, if this transform Cx
- * is represented by the matrix [this] and <code>Tx</code> is
- * represented by the matrix [Tx] then this method does the
- * following:
- * <pre>
- * [this] = [Tx] x [this]
- * </pre>
- * @param Tx the <code>AffineTransform</code> object to be
- * concatenated with this <code>AffineTransform</code> object.
- * @see #concatenate
- */
- public void preConcatenate(AffineTransform Tx) {
- double M0, M1;
- double T00, T01, T10, T11;
- double T02, T12;
- int mystate = state;
- int txstate = Tx.state;
- switch ((txstate << HI_SHIFT) | mystate) {
- case (HI_IDENTITY | APPLY_IDENTITY):
- case (HI_IDENTITY | APPLY_TRANSLATE):
- case (HI_IDENTITY | APPLY_SCALE):
- case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_IDENTITY | APPLY_SHEAR):
- case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
- case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- // Tx is IDENTITY...
- return;
-
- case (HI_TRANSLATE | APPLY_IDENTITY):
- case (HI_TRANSLATE | APPLY_SCALE):
- case (HI_TRANSLATE | APPLY_SHEAR):
- case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
- // Tx is TRANSLATE, this has no TRANSLATE
- m02 = Tx.m02;
- m12 = Tx.m12;
- state = mystate | APPLY_TRANSLATE;
- type |= TYPE_TRANSLATION;
- return;
-
- case (HI_TRANSLATE | APPLY_TRANSLATE):
- case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- // Tx is TRANSLATE, this has one too
- m02 = m02 + Tx.m02;
- m12 = m12 + Tx.m12;
- return;
-
- case (HI_SCALE | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_IDENTITY):
- // Only these two existing states need a new state
- state = mystate | APPLY_SCALE;
- /* NOBREAK */
- case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
- case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_SHEAR):
- case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SCALE | APPLY_SCALE):
- // Tx is SCALE, this is anything
- T00 = Tx.m00;
- T11 = Tx.m11;
- if ((mystate & APPLY_SHEAR) != 0) {
- m01 = m01 * T00;
- m10 = m10 * T11;
- if ((mystate & APPLY_SCALE) != 0) {
- m00 = m00 * T00;
- m11 = m11 * T11;
- }
- } else {
- m00 = m00 * T00;
- m11 = m11 * T11;
- }
- if ((mystate & APPLY_TRANSLATE) != 0) {
- m02 = m02 * T00;
- m12 = m12 * T11;
- }
- type = TYPE_UNKNOWN;
- return;
- case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_SHEAR):
- mystate = mystate | APPLY_SCALE;
- /* NOBREAK */
- case (HI_SHEAR | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_IDENTITY):
- case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_SCALE):
- state = mystate ^ APPLY_SHEAR;
- /* NOBREAK */
- case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
- // Tx is SHEAR, this is anything
- T01 = Tx.m01;
- T10 = Tx.m10;
-
- M0 = m00;
- m00 = m10 * T01;
- m10 = M0 * T10;
-
- M0 = m01;
- m01 = m11 * T01;
- m11 = M0 * T10;
-
- M0 = m02;
- m02 = m12 * T01;
- m12 = M0 * T10;
- type = TYPE_UNKNOWN;
- return;
- }
- // If Tx has more than one attribute, it is not worth optimizing
- // all of those cases...
- T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02;
- T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12;
- switch (mystate) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M0 = m02;
- M1 = m12;
- T02 += M0 * T00 + M1 * T01;
- T12 += M0 * T10 + M1 * T11;
-
- /* NOBREAK */
- case (APPLY_SHEAR | APPLY_SCALE):
- m02 = T02;
- m12 = T12;
-
- M0 = m00;
- M1 = m10;
- m00 = M0 * T00 + M1 * T01;
- m10 = M0 * T10 + M1 * T11;
-
- M0 = m01;
- M1 = m11;
- m01 = M0 * T00 + M1 * T01;
- m11 = M0 * T10 + M1 * T11;
- break;
-
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- M0 = m02;
- M1 = m12;
- T02 += M0 * T00 + M1 * T01;
- T12 += M0 * T10 + M1 * T11;
-
- /* NOBREAK */
- case (APPLY_SHEAR):
- m02 = T02;
- m12 = T12;
-
- M0 = m10;
- m00 = M0 * T01;
- m10 = M0 * T11;
-
- M0 = m01;
- m01 = M0 * T00;
- m11 = M0 * T10;
- break;
-
- case (APPLY_SCALE | APPLY_TRANSLATE):
- M0 = m02;
- M1 = m12;
- T02 += M0 * T00 + M1 * T01;
- T12 += M0 * T10 + M1 * T11;
-
- /* NOBREAK */
- case (APPLY_SCALE):
- m02 = T02;
- m12 = T12;
-
- M0 = m00;
- m00 = M0 * T00;
- m10 = M0 * T10;
-
- M0 = m11;
- m01 = M0 * T01;
- m11 = M0 * T11;
- break;
-
- case (APPLY_TRANSLATE):
- M0 = m02;
- M1 = m12;
- T02 += M0 * T00 + M1 * T01;
- T12 += M0 * T10 + M1 * T11;
-
- /* NOBREAK */
- case (APPLY_IDENTITY):
- m02 = T02;
- m12 = T12;
-
- m00 = T00;
- m10 = T10;
-
- m01 = T01;
- m11 = T11;
-
- state = mystate | txstate;
- type = TYPE_UNKNOWN;
- return;
- }
- updateState();
- }
-
- /**
- * Returns an <code>AffineTransform</code> object representing the
- * inverse transformation.
- * The inverse transform Tx' of this transform Tx
- * maps coordinates transformed by Tx back
- * to their original coordinates.
- * In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)).
- * <p>
- * If this transform maps all coordinates onto a point or a line
- * then it will not have an inverse, since coordinates that do
- * not lie on the destination point or line will not have an inverse
- * mapping.
- * The <code>getDeterminant</code> method can be used to determine if this
- * transform has no inverse, in which case an exception will be
- * thrown if the <code>createInverse</code> method is called.
- * @return a new <code>AffineTransform</code> object representing the
- * inverse transformation.
- * @see #getDeterminant
- * @exception NoninvertibleTransformException
- * if the matrix cannot be inverted.
- */
- public AffineTransform createInverse()
- throws NoninvertibleTransformException
- {
- double det;
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- det = m00 * m11 - m01 * m10;
- if (Math.abs(det) <= Double.MIN_VALUE) {
- throw new NoninvertibleTransformException("Determinant is "+
- det);
- }
- return new AffineTransform( m11 / det, -m10 / det,
- -m01 / det, m00 / det,
- (m01 * m12 - m11 * m02) / det,
- (m10 * m02 - m00 * m12) / det,
- (APPLY_SHEAR |
- APPLY_SCALE |
- APPLY_TRANSLATE));
- case (APPLY_SHEAR | APPLY_SCALE):
- det = m00 * m11 - m01 * m10;
- if (Math.abs(det) <= Double.MIN_VALUE) {
- throw new NoninvertibleTransformException("Determinant is "+
- det);
- }
- return new AffineTransform( m11 / det, -m10 / det,
- -m01 / det, m00 / det,
- 0.0, 0.0,
- (APPLY_SHEAR | APPLY_SCALE));
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- if (m01 == 0.0 || m10 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- return new AffineTransform( 0.0, 1.0 / m01,
- 1.0 / m10, 0.0,
- -m12 / m10, -m02 / m01,
- (APPLY_SHEAR | APPLY_TRANSLATE));
- case (APPLY_SHEAR):
- if (m01 == 0.0 || m10 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- return new AffineTransform(0.0, 1.0 / m01,
- 1.0 / m10, 0.0,
- 0.0, 0.0,
- (APPLY_SHEAR));
- case (APPLY_SCALE | APPLY_TRANSLATE):
- if (m00 == 0.0 || m11 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- return new AffineTransform( 1.0 / m00, 0.0,
- 0.0, 1.0 / m11,
- -m02 / m00, -m12 / m11,
- (APPLY_SCALE | APPLY_TRANSLATE));
- case (APPLY_SCALE):
- if (m00 == 0.0 || m11 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- return new AffineTransform(1.0 / m00, 0.0,
- 0.0, 1.0 / m11,
- 0.0, 0.0,
- (APPLY_SCALE));
- case (APPLY_TRANSLATE):
- return new AffineTransform( 1.0, 0.0,
- 0.0, 1.0,
- -m02, -m12,
- (APPLY_TRANSLATE));
- case (APPLY_IDENTITY):
- return new AffineTransform();
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms the specified <code>ptSrc</code> and stores the result
- * in <code>ptDst</code>.
- * If <code>ptDst</code> is <code>null</code>, a new {@link Point2D}
- * object is allocated and then the result of the transformation is
- * stored in this object.
- * In either case, <code>ptDst</code>, which contains the
- * transformed point, is returned for convenience.
- * If <code>ptSrc</code> and <code>ptDst</code> are the same
- * object, the input point is correctly overwritten with
- * the transformed point.
- * @param ptSrc the specified <code>Point2D</code> to be transformed
- * @param ptDst the specified <code>Point2D</code> that stores the
- * result of transforming <code>ptSrc</code>
- * @return the <code>ptDst</code> after transforming
- * <code>ptSrc</code> and stroring the result in <code>ptDst</code>.
- */
- public Point2D transform(Point2D ptSrc, Point2D ptDst) {
- if (ptDst == null) {
- if (ptSrc instanceof Point2D.Double) {
- ptDst = new Point2D.Double();
- } else {
- ptDst = new Point2D.Float();
- }
- }
- // Copy source coords into local variables in case src == dst
- double x = ptSrc.getX();
- double y = ptSrc.getY();
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- ptDst.setLocation(x * m00 + y * m01 + m02,
- x * m10 + y * m11 + m12);
- return ptDst;
- case (APPLY_SHEAR | APPLY_SCALE):
- ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
- return ptDst;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- ptDst.setLocation(y * m01 + m02, x * m10 + m12);
- return ptDst;
- case (APPLY_SHEAR):
- ptDst.setLocation(y * m01, x * m10);
- return ptDst;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- ptDst.setLocation(x * m00 + m02, y * m11 + m12);
- return ptDst;
- case (APPLY_SCALE):
- ptDst.setLocation(x * m00, y * m11);
- return ptDst;
- case (APPLY_TRANSLATE):
- ptDst.setLocation(x + m02, y + m12);
- return ptDst;
- case (APPLY_IDENTITY):
- ptDst.setLocation(x, y);
- return ptDst;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms an array of point objects by this transform.
- * If any element of the <code>ptDst</code> array is
- * <code>null</code>, a new <code>Point2D</code> object is allocated
- * and stored into that element before storing the results of the
- * transformation.
- * <p>
- * Note that this method does not take any precautions to
- * avoid problems caused by storing results into <code>Point2D</code>
- * objects that will be used as the source for calculations
- * further down the source array.
- * This method does guarantee that if a specified <code>Point2D</code>
- * object is both the source and destination for the same single point
- * transform operation then the results will not be stored until
- * the calculations are complete to avoid storing the results on
- * top of the operands.
- * If, however, the destination <code>Point2D</code> object for one
- * operation is the same object as the source <code>Point2D</code>
- * object for another operation further down the source array then
- * the original coordinates in that point are overwritten before
- * they can be converted.
- * @param ptSrc the array containing the source point objects
- * @param ptDst the array into which the transform point objects are
- * returned
- * @param srcOff the offset to the first point object to be
- * transformed in the source array
- * @param dstOff the offset to the location of the first
- * transformed point object that is stored in the destination array
- * @param numPts the number of point objects to be transformed
- */
- public void transform(Point2D[] ptSrc, int srcOff,
- Point2D[] ptDst, int dstOff,
- int numPts) {
- int state = this.state;
- while (--numPts >= 0) {
- // Copy source coords into local variables in case src == dst
- Point2D src = ptSrc[srcOff++];
- double x = src.getX();
- double y = src.getY();
- Point2D dst = ptDst[dstOff++];
- if (dst == null) {
- if (src instanceof Point2D.Double) {
- dst = new Point2D.Double();
- } else {
- dst = new Point2D.Float();
- }
- ptDst[dstOff - 1] = dst;
- }
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- dst.setLocation(x * m00 + y * m01 + m02,
- x * m10 + y * m11 + m12);
- break;
- case (APPLY_SHEAR | APPLY_SCALE):
- dst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
- break;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- dst.setLocation(y * m01 + m02, x * m10 + m12);
- break;
- case (APPLY_SHEAR):
- dst.setLocation(y * m01, x * m10);
- break;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- dst.setLocation(x * m00 + m02, y * m11 + m12);
- break;
- case (APPLY_SCALE):
- dst.setLocation(x * m00, y * m11);
- break;
- case (APPLY_TRANSLATE):
- dst.setLocation(x + m02, y + m12);
- break;
- case (APPLY_IDENTITY):
- dst.setLocation(x, y);
- break;
- }
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms an array of floating point coordinates by this transform.
- * The two coordinate array sections can be exactly the same or
- * can be overlapping sections of the same array without affecting the
- * validity of the results.
- * This method ensures that no source coordinates are overwritten by a
- * previous operation before they can be transformed.
- * The coordinates are stored in the arrays starting at the specified
- * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
- * @param srcPts the array containing the source point coordinates.
- * Each point is stored as a pair of x, y coordinates.
- * @param dstPts the array into which the transformed point coordinates
- * are returned. Each point is stored as a pair of x, y
- * coordinates.
- * @param srcOff the offset to the first point to be transformed
- * in the source array
- * @param dstOff the offset to the location of the first
- * transformed point that is stored in the destination array
- * @param numPts the number of points to be transformed
- */
- public void transform(float[] srcPts, int srcOff,
- float[] dstPts, int dstOff,
- int numPts) {
- double M00, M01, M02, M10, M11, M12; // For caching
- if (dstPts == srcPts &&
- dstOff > srcOff && dstOff < srcOff + numPts * 2)
- {
- // If the arrays overlap partially with the destination higher
- // than the source and we transform the coordinates normally
- // we would overwrite some of the later source coordinates
- // with results of previous transformations.
- // To get around this we use arraycopy to copy the points
- // to their final destination with correct overwrite
- // handling and then transform them in place in the new
- // safer location.
- System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
- // srcPts = dstPts; // They are known to be equal.
- srcOff = dstOff;
- }
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M01 = m01; M02 = m02;
- M10 = m10; M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02);
- dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12);
- }
- return;
- case (APPLY_SHEAR | APPLY_SCALE):
- M00 = m00; M01 = m01;
- M10 = m10; M11 = m11;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M00 * x + M01 * y);
- dstPts[dstOff++] = (float) (M10 * x + M11 * y);
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- M01 = m01; M02 = m02;
- M10 = m10; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02);
- dstPts[dstOff++] = (float) (M10 * x + M12);
- }
- return;
- case (APPLY_SHEAR):
- M01 = m01; M10 = m10;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]);
- dstPts[dstOff++] = (float) (M10 * x);
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M02 = m02;
- M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02);
- dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12);
- }
- return;
- case (APPLY_SCALE):
- M00 = m00; M11 = m11;
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]);
- dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]);
- }
- return;
- case (APPLY_TRANSLATE):
- M02 = m02; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02);
- dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12);
- }
- return;
- case (APPLY_IDENTITY):
- if (srcPts != dstPts || srcOff != dstOff) {
- System.arraycopy(srcPts, srcOff, dstPts, dstOff,
- numPts * 2);
- }
- return;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms an array of double precision coordinates by this transform.
- * The two coordinate array sections can be exactly the same or
- * can be overlapping sections of the same array without affecting the
- * validity of the results.
- * This method ensures that no source coordinates are
- * overwritten by a previous operation before they can be transformed.
- * The coordinates are stored in the arrays starting at the indicated
- * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
- * @param srcPts the array containing the source point coordinates.
- * Each point is stored as a pair of x, y coordinates.
- * @param dstPts the array into which the transformed point
- * coordinates are returned. Each point is stored as a pair of
- * x, y coordinates.
- * @param srcOff the offset to the first point to be transformed
- * in the source array
- * @param dstOff the offset to the location of the first
- * transformed point that is stored in the destination array
- * @param numPts the number of point objects to be transformed
- */
- public void transform(double[] srcPts, int srcOff,
- double[] dstPts, int dstOff,
- int numPts) {
- double M00, M01, M02, M10, M11, M12; // For caching
- if (dstPts == srcPts &&
- dstOff > srcOff && dstOff < srcOff + numPts * 2)
- {
- // If the arrays overlap partially with the destination higher
- // than the source and we transform the coordinates normally
- // we would overwrite some of the later source coordinates
- // with results of previous transformations.
- // To get around this we use arraycopy to copy the points
- // to their final destination with correct overwrite
- // handling and then transform them in place in the new
- // safer location.
- System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
- // srcPts = dstPts; // They are known to be equal.
- srcOff = dstOff;
- }
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M01 = m01; M02 = m02;
- M10 = m10; M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = M00 * x + M01 * y + M02;
- dstPts[dstOff++] = M10 * x + M11 * y + M12;
- }
- return;
- case (APPLY_SHEAR | APPLY_SCALE):
- M00 = m00; M01 = m01;
- M10 = m10; M11 = m11;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = M00 * x + M01 * y;
- dstPts[dstOff++] = M10 * x + M11 * y;
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- M01 = m01; M02 = m02;
- M10 = m10; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02;
- dstPts[dstOff++] = M10 * x + M12;
- }
- return;
- case (APPLY_SHEAR):
- M01 = m01; M10 = m10;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = M01 * srcPts[srcOff++];
- dstPts[dstOff++] = M10 * x;
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M02 = m02;
- M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02;
- dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12;
- }
- return;
- case (APPLY_SCALE):
- M00 = m00; M11 = m11;
- while (--numPts >= 0) {
- dstPts[dstOff++] = M00 * srcPts[srcOff++];
- dstPts[dstOff++] = M11 * srcPts[srcOff++];
- }
- return;
- case (APPLY_TRANSLATE):
- M02 = m02; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = srcPts[srcOff++] + M02;
- dstPts[dstOff++] = srcPts[srcOff++] + M12;
- }
- return;
- case (APPLY_IDENTITY):
- if (srcPts != dstPts || srcOff != dstOff) {
- System.arraycopy(srcPts, srcOff, dstPts, dstOff,
- numPts * 2);
- }
- return;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms an array of floating point coordinates by this transform
- * and stores the results into an array of doubles.
- * The coordinates are stored in the arrays starting at the specified
- * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
- * @param srcPts the array containing the source point coordinates.
- * Each point is stored as a pair of x, y coordinates.
- * @param dstPts the array into which the transformed point coordinates
- * are returned. Each point is stored as a pair of x, y
- * coordinates.
- * @param srcOff the offset to the first point to be transformed
- * in the source array
- * @param dstOff the offset to the location of the first
- * transformed point that is stored in the destination array
- * @param numPts the number of points to be transformed
- */
- public void transform(float[] srcPts, int srcOff,
- double[] dstPts, int dstOff,
- int numPts) {
- double M00, M01, M02, M10, M11, M12; // For caching
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M01 = m01; M02 = m02;
- M10 = m10; M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = M00 * x + M01 * y + M02;
- dstPts[dstOff++] = M10 * x + M11 * y + M12;
- }
- return;
- case (APPLY_SHEAR | APPLY_SCALE):
- M00 = m00; M01 = m01;
- M10 = m10; M11 = m11;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = M00 * x + M01 * y;
- dstPts[dstOff++] = M10 * x + M11 * y;
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- M01 = m01; M02 = m02;
- M10 = m10; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02;
- dstPts[dstOff++] = M10 * x + M12;
- }
- return;
- case (APPLY_SHEAR):
- M01 = m01; M10 = m10;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = M01 * srcPts[srcOff++];
- dstPts[dstOff++] = M10 * x;
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M02 = m02;
- M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02;
- dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12;
- }
- return;
- case (APPLY_SCALE):
- M00 = m00; M11 = m11;
- while (--numPts >= 0) {
- dstPts[dstOff++] = M00 * srcPts[srcOff++];
- dstPts[dstOff++] = M11 * srcPts[srcOff++];
- }
- return;
- case (APPLY_TRANSLATE):
- M02 = m02; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = srcPts[srcOff++] + M02;
- dstPts[dstOff++] = srcPts[srcOff++] + M12;
- }
- return;
- case (APPLY_IDENTITY):
- while (--numPts >= 0) {
- dstPts[dstOff++] = srcPts[srcOff++];
- dstPts[dstOff++] = srcPts[srcOff++];
- }
- return;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms an array of double precision coordinates by this transform
- * and stores the results into an array of floats.
- * The coordinates are stored in the arrays starting at the specified
- * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
- * @param srcPts the array containing the source point coordinates.
- * Each point is stored as a pair of x, y coordinates.
- * @param dstPts the array into which the transformed point
- * coordinates are returned. Each point is stored as a pair of
- * x, y coordinates.
- * @param srcOff the offset to the first point to be transformed
- * in the source array
- * @param dstOff the offset to the location of the first
- * transformed point that is stored in the destination array
- * @param numPts the number of point objects to be transformed
- */
- public void transform(double[] srcPts, int srcOff,
- float[] dstPts, int dstOff,
- int numPts) {
- double M00, M01, M02, M10, M11, M12; // For caching
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M01 = m01; M02 = m02;
- M10 = m10; M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02);
- dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12);
- }
- return;
- case (APPLY_SHEAR | APPLY_SCALE):
- M00 = m00; M01 = m01;
- M10 = m10; M11 = m11;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M00 * x + M01 * y);
- dstPts[dstOff++] = (float) (M10 * x + M11 * y);
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- M01 = m01; M02 = m02;
- M10 = m10; M12 = m12;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02);
- dstPts[dstOff++] = (float) (M10 * x + M12);
- }
- return;
- case (APPLY_SHEAR):
- M01 = m01; M10 = m10;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]);
- dstPts[dstOff++] = (float) (M10 * x);
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M02 = m02;
- M11 = m11; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02);
- dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12);
- }
- return;
- case (APPLY_SCALE):
- M00 = m00; M11 = m11;
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]);
- dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]);
- }
- return;
- case (APPLY_TRANSLATE):
- M02 = m02; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02);
- dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12);
- }
- return;
- case (APPLY_IDENTITY):
- while (--numPts >= 0) {
- dstPts[dstOff++] = (float) (srcPts[srcOff++]);
- dstPts[dstOff++] = (float) (srcPts[srcOff++]);
- }
- return;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Inverse transforms the specified <code>ptSrc</code> and stores the
- * result in <code>ptDst</code>.
- * If <code>ptDst</code> is <code>null</code>, a new
- * <code>Point2D</code> object is allocated and then the result of the
- * transform is stored in this object.
- * In either case, <code>ptDst</code>, which contains the transformed
- * point, is returned for convenience.
- * If <code>ptSrc</code> and <code>ptDst</code> are the same
- * object, the input point is correctly overwritten with the
- * transformed point.
- * @param ptSrc the point to be inverse transformed
- * @param ptDst the resulting transformed point
- * @return <code>ptDst</code>, which contains the result of the
- * inverse transform.
- * @exception NoninvertibleTransformException if the matrix cannot be
- * inverted.
- */
- public Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)
- throws NoninvertibleTransformException
- {
- if (ptDst == null) {
- if (ptSrc instanceof Point2D.Double) {
- ptDst = new Point2D.Double();
- } else {
- ptDst = new Point2D.Float();
- }
- }
- // Copy source coords into local variables in case src == dst
- double x = ptSrc.getX();
- double y = ptSrc.getY();
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- x -= m02;
- y -= m12;
- /* NOBREAK */
- case (APPLY_SHEAR | APPLY_SCALE):
- double det = m00 * m11 - m01 * m10;
- if (Math.abs(det) <= Double.MIN_VALUE) {
- throw new NoninvertibleTransformException("Determinant is "+
- det);
- }
- ptDst.setLocation((x * m11 - y * m01) / det,
- (y * m00 - x * m10) / det);
- return ptDst;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- x -= m02;
- y -= m12;
- /* NOBREAK */
- case (APPLY_SHEAR):
- if (m01 == 0.0 || m10 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- ptDst.setLocation(y / m10, x / m01);
- return ptDst;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- x -= m02;
- y -= m12;
- /* NOBREAK */
- case (APPLY_SCALE):
- if (m00 == 0.0 || m11 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- ptDst.setLocation(x / m00, y / m11);
- return ptDst;
- case (APPLY_TRANSLATE):
- ptDst.setLocation(x - m02, y - m12);
- return ptDst;
- case (APPLY_IDENTITY):
- ptDst.setLocation(x, y);
- return ptDst;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Inverse transforms an array of double precision coordinates by
- * this transform.
- * The two coordinate array sections can be exactly the same or
- * can be overlapping sections of the same array without affecting the
- * validity of the results.
- * This method ensures that no source coordinates are
- * overwritten by a previous operation before they can be transformed.
- * The coordinates are stored in the arrays starting at the specified
- * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
- * @param srcPts the array containing the source point coordinates.
- * Each point is stored as a pair of x, y coordinates.
- * @param dstPts the array into which the transformed point
- * coordinates are returned. Each point is stored as a pair of
- * x, y coordinates.
- * @param srcOff the offset to the first point to be transformed
- * in the source array
- * @param dstOff the offset to the location of the first
- * transformed point that is stored in the destination array
- * @param numPts the number of point objects to be transformed
- * @exception NoninvertibleTransformException if the matrix cannot be
- * inverted.
- */
- public void inverseTransform(double[] srcPts, int srcOff,
- double[] dstPts, int dstOff,
- int numPts)
- throws NoninvertibleTransformException
- {
- double M00, M01, M02, M10, M11, M12; // For caching
- double det;
- if (dstPts == srcPts &&
- dstOff > srcOff && dstOff < srcOff + numPts * 2)
- {
- // If the arrays overlap partially with the destination higher
- // than the source and we transform the coordinates normally
- // we would overwrite some of the later source coordinates
- // with results of previous transformations.
- // To get around this we use arraycopy to copy the points
- // to their final destination with correct overwrite
- // handling and then transform them in place in the new
- // safer location.
- System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
- // srcPts = dstPts; // They are known to be equal.
- srcOff = dstOff;
- }
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M01 = m01; M02 = m02;
- M10 = m10; M11 = m11; M12 = m12;
- det = M00 * M11 - M01 * M10;
- if (Math.abs(det) <= Double.MIN_VALUE) {
- throw new NoninvertibleTransformException("Determinant is "+
- det);
- }
- while (--numPts >= 0) {
- double x = srcPts[srcOff++] - M02;
- double y = srcPts[srcOff++] - M12;
- dstPts[dstOff++] = (x * M11 - y * M01) / det;
- dstPts[dstOff++] = (y * M00 - x * M10) / det;
- }
- return;
- case (APPLY_SHEAR | APPLY_SCALE):
- M00 = m00; M01 = m01;
- M10 = m10; M11 = m11;
- det = M00 * M11 - M01 * M10;
- if (Math.abs(det) <= Double.MIN_VALUE) {
- throw new NoninvertibleTransformException("Determinant is "+
- det);
- }
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = (x * M11 - y * M01) / det;
- dstPts[dstOff++] = (y * M00 - x * M10) / det;
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- M01 = m01; M02 = m02;
- M10 = m10; M12 = m12;
- if (M01 == 0.0 || M10 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- while (--numPts >= 0) {
- double x = srcPts[srcOff++] - M02;
- dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M10;
- dstPts[dstOff++] = x / M01;
- }
- return;
- case (APPLY_SHEAR):
- M01 = m01; M10 = m10;
- if (M01 == 0.0 || M10 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = srcPts[srcOff++] / M10;
- dstPts[dstOff++] = x / M01;
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- M00 = m00; M02 = m02;
- M11 = m11; M12 = m12;
- if (M00 == 0.0 || M11 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- while (--numPts >= 0) {
- dstPts[dstOff++] = (srcPts[srcOff++] - M02) / M00;
- dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M11;
- }
- return;
- case (APPLY_SCALE):
- M00 = m00; M11 = m11;
- if (M00 == 0.0 || M11 == 0.0) {
- throw new NoninvertibleTransformException("Determinant is 0");
- }
- while (--numPts >= 0) {
- dstPts[dstOff++] = srcPts[srcOff++] / M00;
- dstPts[dstOff++] = srcPts[srcOff++] / M11;
- }
- return;
- case (APPLY_TRANSLATE):
- M02 = m02; M12 = m12;
- while (--numPts >= 0) {
- dstPts[dstOff++] = srcPts[srcOff++] - M02;
- dstPts[dstOff++] = srcPts[srcOff++] - M12;
- }
- return;
- case (APPLY_IDENTITY):
- if (srcPts != dstPts || srcOff != dstOff) {
- System.arraycopy(srcPts, srcOff, dstPts, dstOff,
- numPts * 2);
- }
- return;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms the relative distance vector specified by
- * <code>ptSrc</code> and stores the result in <code>ptDst</code>.
- * A relative distance vector is transformed without applying the
- * translation components of the affine transformation matrix
- * using the following equations:
- * <pre>
- * [ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ]
- * [ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ]
- * [ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ]
- * </pre>
- * If <code>ptDst</code> is <code>null</code>, a new
- * <code>Point2D</code> object is allocated and then the result of the
- * transform is stored in this object.
- * In either case, <code>ptDst</code>, which contains the
- * transformed point, is returned for convenience.
- * If <code>ptSrc</code> and <code>ptDst</code> are the same object,
- * the input point is correctly overwritten with the transformed
- * point.
- * @param ptSrc the distance vector to be delta transformed
- * @param ptDst the resulting transformed distance vector
- * @return <code>ptDst</code>, which contains the result of the
- * transformation.
- */
- public Point2D deltaTransform(Point2D ptSrc, Point2D ptDst) {
- if (ptDst == null) {
- if (ptSrc instanceof Point2D.Double) {
- ptDst = new Point2D.Double();
- } else {
- ptDst = new Point2D.Float();
- }
- }
- // Copy source coords into local variables in case src == dst
- double x = ptSrc.getX();
- double y = ptSrc.getY();
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SHEAR | APPLY_SCALE):
- ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
- return ptDst;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- case (APPLY_SHEAR):
- ptDst.setLocation(y * m01, x * m10);
- return ptDst;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SCALE):
- ptDst.setLocation(x * m00, y * m11);
- return ptDst;
- case (APPLY_TRANSLATE):
- case (APPLY_IDENTITY):
- ptDst.setLocation(x, y);
- return ptDst;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Transforms an array of relative distance vectors by this
- * transform.
- * A relative distance vector is transformed without applying the
- * translation components of the affine transformation matrix
- * using the following equations:
- * <pre>
- * [ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ]
- * [ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ]
- * [ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ]
- * </pre>
- * The two coordinate array sections can be exactly the same or
- * can be overlapping sections of the same array without affecting the
- * validity of the results.
- * This method ensures that no source coordinates are
- * overwritten by a previous operation before they can be transformed.
- * The coordinates are stored in the arrays starting at the indicated
- * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>.
- * @param srcPts the array containing the source distance vectors.
- * Each vector is stored as a pair of relative x, y coordinates.
- * @param dstPts the array into which the transformed distance vectors
- * are returned. Each vector is stored as a pair of relative
- * x, y coordinates.
- * @param srcOff the offset to the first vector to be transformed
- * in the source array
- * @param dstOff the offset to the location of the first
- * transformed vector that is stored in the destination array
- * @param numPts the number of vector coordinate pairs to be
- * transformed
- */
- public void deltaTransform(double[] srcPts, int srcOff,
- double[] dstPts, int dstOff,
- int numPts) {
- double M00, M01, M10, M11; // For caching
- if (dstPts == srcPts &&
- dstOff > srcOff && dstOff < srcOff + numPts * 2)
- {
- // If the arrays overlap partially with the destination higher
- // than the source and we transform the coordinates normally
- // we would overwrite some of the later source coordinates
- // with results of previous transformations.
- // To get around this we use arraycopy to copy the points
- // to their final destination with correct overwrite
- // handling and then transform them in place in the new
- // safer location.
- System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
- // srcPts = dstPts; // They are known to be equal.
- srcOff = dstOff;
- }
- switch (state) {
- default:
- stateError();
- /* NOTREACHED */
- case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SHEAR | APPLY_SCALE):
- M00 = m00; M01 = m01;
- M10 = m10; M11 = m11;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- double y = srcPts[srcOff++];
- dstPts[dstOff++] = x * M00 + y * M01;
- dstPts[dstOff++] = x * M10 + y * M11;
- }
- return;
- case (APPLY_SHEAR | APPLY_TRANSLATE):
- case (APPLY_SHEAR):
- M01 = m01; M10 = m10;
- while (--numPts >= 0) {
- double x = srcPts[srcOff++];
- dstPts[dstOff++] = srcPts[srcOff++] * M01;
- dstPts[dstOff++] = x * M10;
- }
- return;
- case (APPLY_SCALE | APPLY_TRANSLATE):
- case (APPLY_SCALE):
- M00 = m00; M11 = m11;
- while (--numPts >= 0) {
- dstPts[dstOff++] = srcPts[srcOff++] * M00;
- dstPts[dstOff++] = srcPts[srcOff++] * M11;
- }
- return;
- case (APPLY_TRANSLATE):
- case (APPLY_IDENTITY):
- if (srcPts != dstPts || srcOff != dstOff) {
- System.arraycopy(srcPts, srcOff, dstPts, dstOff,
- numPts * 2);
- }
- return;
- }
-
- /* NOTREACHED */
- }
-
- /**
- * Returns a new {@link Shape} object defined by the geometry of the
- * specified <code>Shape</code> after it has been transformed by
- * this transform.
- * @param pSrc the specified <code>Shape</code> object to be
- * transformed by this transform.
- * @return a new <code>Shape</code> object that defines the geometry
- * of the transformed <code>Shape</code>.
- */
- public Shape createTransformedShape(Shape pSrc) {
- if (pSrc == null) {
- return null;
- }
-
- if (pSrc instanceof GeneralPath) {
- return ((GeneralPath)pSrc).createTransformedShape(this);
- } else {
- PathIterator pi = pSrc.getPathIterator(this);
- GeneralPath gp = new GeneralPath(pi.getWindingRule());
- gp.append(pi, false);
- return gp;
- }
-
- /* NOTREACHED */
- }
-
- // Round values to sane precision for printing
- // Note that Math.sin(Math.PI) has an error of about 10^-16
- private static double _matround(double matval) {
- return Math.rint(matval * 1E15) / 1E15;
- }
-
- /**
- * Returns a <code>String</code> that represents the value of this
- * {@link Object}.
- * @return a <code>String</code> representing the value of this
- * <code>Object</code>.
- */
- public String toString() {
- return ("AffineTransform[["
- + _matround(m00) + ", "
- + _matround(m01) + ", "
- + _matround(m02) + "], ["
- + _matround(m10) + ", "
- + _matround(m11) + ", "
- + _matround(m12) + "]]");
- }
-
- /**
- * Returns <code>true</code> if this <code>AffineTransform</code> is
- * an identity transform.
- * @return <code>true</code> if this <code>AffineTransform</code> is
- * an identity transform; <code>false</code> otherwise.
- */
- public boolean isIdentity() {
- return (state == APPLY_IDENTITY || (getType() == TYPE_IDENTITY));
- }
-
- /**
- * Returns a copy of this <code>AffineTransform</code> object.
- * @return an <code>Object</code> that is a copy of this
- * <code>AffineTransform</code> object.
- */
- public Object clone() {
- try {
- return super.clone();
- } catch (CloneNotSupportedException e) {
- // this shouldn't happen, since we are Cloneable
- throw new InternalError();
- }
- }
-
- /**
- * Returns the hashcode for this transform.
- * @return a hash code for this transform.
- */
- public int hashCode() {
- long bits = Double.doubleToLongBits(m00);
- bits = bits * 31 + Double.doubleToLongBits(m01);
- bits = bits * 31 + Double.doubleToLongBits(m02);
- bits = bits * 31 + Double.doubleToLongBits(m10);
- bits = bits * 31 + Double.doubleToLongBits(m11);
- bits = bits * 31 + Double.doubleToLongBits(m12);
- return (((int) bits) ^ ((int) (bits >> 32)));
- }
-
- /**
- * Returns <code>true</code> if this <code>AffineTransform</code>
- * represents the same affine coordinate transform as the specified
- * argument.
- * @param obj the <code>Object</code> to test for equality with this
- * <code>AffineTransform</code>
- * @return <code>true</code> if <code>obj</code> equals this
- * <code>AffineTransform</code> object; <code>false</code> otherwise.
- */
- public boolean equals(Object obj) {
- if (!(obj instanceof AffineTransform)) {
- return false;
- }
-
- AffineTransform a = (AffineTransform)obj;
-
- return ((m00 == a.m00) && (m01 == a.m01) && (m02 == a.m02) &&
- (m10 == a.m10) && (m11 == a.m11) && (m12 == a.m12));
- }
-
- /* Serialization support. A readObject method is neccessary because
- * the state field is part of the implementation of this particular
- * AffineTransform and not part of the public specification. The
- * state variable's value needs to be recalculated on the fly by the
- * readObject method as it is in the 6-argument matrix constructor.
- */
-
- private void writeObject(java.io.ObjectOutputStream s)
- throws java.lang.ClassNotFoundException, java.io.IOException
- {
- s.defaultWriteObject();
- }
-
- private void readObject(java.io.ObjectInputStream s)
- throws java.lang.ClassNotFoundException, java.io.IOException
- {
- s.defaultReadObject();
- updateState();
- }
- }