- /*
- * @(#)QuadCurve2D.java 1.29 03/12/19
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.awt.geom;
-
- import java.awt.Shape;
- import java.awt.Rectangle;
-
- /**
- * The <code>QuadCurve2D</code> class defines a quadratic parametric curve
- * segment in (x, y) coordinate space.
- * <p>
- * This class is only the abstract superclass for all objects that
- * store a 2D quadratic curve segment.
- * The actual storage representation of the coordinates is left to
- * the subclass.
- *
- * @version 1.29, 12/19/03
- * @author Jim Graham
- */
- public abstract class QuadCurve2D implements Shape, Cloneable {
- /**
- * A quadratic parametric curve segment specified with
- * <code>float</code> coordinates.
- */
-
- public static class Float extends QuadCurve2D {
-
- /**
- * The x coordinate of the start point of the quadratic curve
- * segment.
- */
- public float x1;
-
- /**
- * The y coordinate of the start point of the quadratic curve
- * segment.
- */
- public float y1;
-
- /**
- * The x coordinate of the control point of the quadratic curve
- * segment.
- */
- public float ctrlx;
-
- /**
- * The y coordinate of the control point of the quadratic curve
- * segment.
- */
- public float ctrly;
-
- /**
- * The x coordinate of the end point of the quadratic curve
- * segment.
- */
- public float x2;
-
- /**
- * The y coordinate of the end point of the quadratic curve
- * segment.
- */
- public float y2;
-
- /**
- * Constructs and initializes a <code>QuadCurve2D</code> with
- * coordinates (0, 0, 0, 0, 0, 0).
- */
- public Float() {
- }
-
- /**
- * Constructs and initializes a <code>QuadCurve2D</code> from the
- * specified coordinates.
- * @param x1, y1 the starting point coordinates
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the ending point coordinates
- */
- public Float(float x1, float y1,
- float ctrlx, float ctrly,
- float x2, float y2) {
- setCurve(x1, y1, ctrlx, ctrly, x2, y2);
- }
-
- /**
- * Returns the x coordinate of the start point in
- * <code>double</code> precision.
- * @return the x coordinate of the starting point.
- */
- public double getX1() {
- return (double) x1;
- }
-
- /**
- * Returns the y coordinate of the start point in
- * <code>double</code> precision.
- * @return the y coordinate of the starting point.
- */
- public double getY1() {
- return (double) y1;
- }
-
- /**
- * Returns the start point.
- * @return a {@link Point2D} object that is the starting point
- * of this <code>QuadCurve2D</code>.
- */
- public Point2D getP1() {
- return new Point2D.Float(x1, y1);
- }
-
- /**
- * Returns the x coordinate of the control point in
- * <code>double</code> precision.
- * @return the x coordinate of the control point.
- */
- public double getCtrlX() {
- return (double) ctrlx;
- }
-
- /**
- * Returns the y coordinate of the control point in
- * <code>double</code> precision.
- * @return the y coordiante of the control point.
- */
- public double getCtrlY() {
- return (double) ctrly;
- }
-
- /**
- * Returns the control point.
- * @return a <code>Point2D</code> that is the control point of
- * this <code>QuadCurve2D</code>.
- */
- public Point2D getCtrlPt() {
- return new Point2D.Float(ctrlx, ctrly);
- }
-
- /**
- * Returns the x coordinate of the end point in
- * <code>double</code> precision.
- * @return the x coordinate of the end point.
- */
- public double getX2() {
- return (double) x2;
- }
-
- /**
- * Returns the y coordinate of the end point in
- * <code>double</code> precision.
- * @return the y coordiante of the end point.
- */
- public double getY2() {
- return (double) y2;
- }
-
- /**
- * Returns the end point.
- * @return a <code>Point2D</code> that is the end point of this
- * <code>QuadCurve2D</code>.
- */
- public Point2D getP2() {
- return new Point2D.Float(x2, y2);
- }
-
- /**
- * Sets the location of the endpoints and controlpoint of this
- * <code>QuadCurve2D</code> to the specified <code>double</code>
- * coordinates.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- */
- public void setCurve(double x1, double y1,
- double ctrlx, double ctrly,
- double x2, double y2) {
- this.x1 = (float) x1;
- this.y1 = (float) y1;
- this.ctrlx = (float) ctrlx;
- this.ctrly = (float) ctrly;
- this.x2 = (float) x2;
- this.y2 = (float) y2;
- }
-
- /**
- * Sets the location of the endpoints and controlpoint of this curve
- * to the specified <code>float</code> coordinates.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- */
- public void setCurve(float x1, float y1,
- float ctrlx, float ctrly,
- float x2, float y2) {
- this.x1 = x1;
- this.y1 = y1;
- this.ctrlx = ctrlx;
- this.ctrly = ctrly;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Returns the bounding box of this <code>QuadCurve2D</code>.
- * @return a {@link Rectangle2D} that is the bounding box
- * of the shape of this <code>QuadCurve2D</code>.
- */
- public Rectangle2D getBounds2D() {
- float left = Math.min(Math.min(x1, x2), ctrlx);
- float top = Math.min(Math.min(y1, y2), ctrly);
- float right = Math.max(Math.max(x1, x2), ctrlx);
- float bottom = Math.max(Math.max(y1, y2), ctrly);
- return new Rectangle2D.Float(left, top,
- right - left, bottom - top);
- }
- }
-
- /**
- * A quadratic parametric curve segment specified with
- * <code>double</code> coordinates.
- */
- public static class Double extends QuadCurve2D {
- /**
- * The x coordinate of the start point of the quadratic curve
- * segment.
- */
- public double x1;
-
- /**
- * The x coordinate of the start point of the quadratic curve
- * segment.
- */
- public double y1;
-
- /**
- * The x coordinate of the control point of the quadratic curve
- * segment.
- */
- public double ctrlx;
-
- /**
- * The y coordinate of the control point of the quadratic curve
- * segment.
- */
- public double ctrly;
-
- /**
- * The x coordinate of the end point of the quadratic curve
- * segment.
- */
- public double x2;
-
- /**
- * The y coordinate of the end point of the quadratic curve
- * segment.
- */
- public double y2;
-
- /**
- * Constructs and initializes a <code>QuadCurve2D</code> with
- * coordinates (0, 0, 0, 0, 0, 0).
- */
- public Double() {
- }
-
- /**
- * Constructs and initializes a <code>QuadCurve2D</code> from the
- * specified coordinates.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- */
- public Double(double x1, double y1,
- double ctrlx, double ctrly,
- double x2, double y2) {
- setCurve(x1, y1, ctrlx, ctrly, x2, y2);
- }
-
- /**
- * Returns the x coordinate of the start point in
- * <code>double</code> precision.
- * @return the x coordinate of the starting point.
- */
- public double getX1() {
- return x1;
- }
-
- /**
- * Returns the y coordinate of the start point in
- * <code>double</code> precision.
- * @return the y coordiante of the starting point.
- */
- public double getY1() {
- return y1;
- }
-
- /**
- * Returns the start point.
- * @return a <code>Point2D</code> that is the starting point
- * of this <code>QuadCurve2D</code>.
- */
- public Point2D getP1() {
- return new Point2D.Double(x1, y1);
- }
-
- /**
- * Returns the x coordinate of the control point in
- * <code>double</code> precision.
- * @return the x coordinate of the control point.
- */
- public double getCtrlX() {
- return ctrlx;
- }
-
- /**
- * Returns the y coordinate of the control point in
- * <code>double</code> precision.
- * @return the y coordiante of the control point.
- */
- public double getCtrlY() {
- return ctrly;
- }
-
- /**
- * Returns the control point.
- * @return a <code>Point2D</code> object that is the control
- * point of this <code>QuadCurve2D</code>.
- */
- public Point2D getCtrlPt() {
- return new Point2D.Double(ctrlx, ctrly);
- }
-
- /**
- * Returns the x coordinate of the end point in
- * <code>double</code> precision.
- * @return the x coordiante of the end point.
- */
- public double getX2() {
- return x2;
- }
-
- /**
- * Returns the y coordinate of the end point in
- * <code>double</code> precision.
- * @return the y coordiante of the end point.
- */
- public double getY2() {
- return y2;
- }
-
- /**
- * Returns the end point.
- * @return a <code>Point2D</code> that is the end point
- * of this <code>QuadCurve2D</code>.
- */
- public Point2D getP2() {
- return new Point2D.Double(x2, y2);
- }
-
- /**
- * Sets the location of the endpoints and controlpoint of this curve
- * to the specified <code>double</code> coordinates.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- */
- public void setCurve(double x1, double y1,
- double ctrlx, double ctrly,
- double x2, double y2) {
- this.x1 = x1;
- this.y1 = y1;
- this.ctrlx = ctrlx;
- this.ctrly = ctrly;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Returns the bounding box of this <code>QuadCurve2D</code>.
- * @return a <code>Rectangle2D</code> that is the bounding
- * box of the shape of this <code>QuadCurve2D</code>.
- */
- public Rectangle2D getBounds2D() {
- double left = Math.min(Math.min(x1, x2), ctrlx);
- double top = Math.min(Math.min(y1, y2), ctrly);
- double right = Math.max(Math.max(x1, x2), ctrlx);
- double bottom = Math.max(Math.max(y1, y2), ctrly);
- return new Rectangle2D.Double(left, top,
- right - left, bottom - top);
- }
- }
-
- /**
- * This is an abstract class that cannot be instantiated directly.
- * Type-specific implementation subclasses are available for
- * instantiation and provide a number of formats for storing
- * the information necessary to satisfy the various accessor
- * methods below.
- *
- * @see java.awt.geom.QuadCurve2D.Float
- * @see java.awt.geom.QuadCurve2D.Double
- */
- protected QuadCurve2D() {
- }
-
- /**
- * Returns the x coordinate of the start point in
- * <code>double</code> in precision.
- * @return the x coordinate of the start point.
- */
- public abstract double getX1();
-
- /**
- * Returns the y coordinate of the start point in
- * <code>double</code> precision.
- * @return the y coordinate of the start point.
- */
- public abstract double getY1();
-
- /**
- * Returns the start point.
- * @return a <code>Point2D</code> that is the start point of this
- * <code>QuadCurve2D</code>.
- */
- public abstract Point2D getP1();
-
- /**
- * Returns the x coordinate of the control point in
- * <code>double</code> precision.
- * @return x coordinate the control point
- */
- public abstract double getCtrlX();
-
- /**
- * Returns the y coordinate of the control point in
- * <code>double</code> precision.
- * @return the y coordinate of the control point.
- */
- public abstract double getCtrlY();
-
- /**
- * Returns the control point.
- * @return a <code>Point2D</code> that is the control point of this
- * <code>Point2D</code>.
- */
- public abstract Point2D getCtrlPt();
-
- /**
- * Returns the x coordinate of the end point in
- * <code>double</code> precision.
- * @return the x coordiante of the end point.
- */
- public abstract double getX2();
-
- /**
- * Returns the y coordinate of the end point in
- * <code>double</code> precision.
- * @return the y coordinate of the end point.
- */
- public abstract double getY2();
-
- /**
- * Returns the end point.
- * @return a <code>Point</code> object that is the end point
- * of this <code>Point2D</code>.
- */
- public abstract Point2D getP2();
-
- /**
- * Sets the location of the endpoints and controlpoint of this curve
- * to the specified <code>double</code> coordinates.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- */
- public abstract void setCurve(double x1, double y1,
- double ctrlx, double ctrly,
- double x2, double y2);
-
- /**
- * Sets the location of the endpoints and controlpoints of this
- * <code>QuadCurve2D</code> to the <code>double</code> coordinates at
- * the specified offset in the specified array.
- * @param coords the array containing coordinate values
- * @param offset the index into the array from which to start
- * getting the coordinate values and assigning them to this
- * <code>QuadCurve2D</code>
- */
- public void setCurve(double[] coords, int offset) {
- setCurve(coords[offset + 0], coords[offset + 1],
- coords[offset + 2], coords[offset + 3],
- coords[offset + 4], coords[offset + 5]);
- }
-
- /**
- * Sets the location of the endpoints and controlpoint of this
- * <code>QuadCurve2D</code> to the specified <code>Point2D</code>
- * coordinates.
- * @param p1 the starting point
- * @param cp the control point
- * @param p2 the ending point
- */
- public void setCurve(Point2D p1, Point2D cp, Point2D p2) {
- setCurve(p1.getX(), p1.getY(),
- cp.getX(), cp.getY(),
- p2.getX(), p2.getY());
- }
-
- /**
- * Sets the location of the endpoints and controlpoints of this
- * <code>QuadCurve2D</code> to the coordinates of the
- * <code>Point2D</code> objects at the specified offset in
- * the specified array.
- * @param pts an array containing <code>Point2D</code> that define
- * coordinate values
- * @param offset the index into <code>pts</code> at which to start
- * getting the coordinate values and assigning them to this
- * <code>QuadCurve2D</code>
- */
- public void setCurve(Point2D[] pts, int offset) {
- setCurve(pts[offset + 0].getX(), pts[offset + 0].getY(),
- pts[offset + 1].getX(), pts[offset + 1].getY(),
- pts[offset + 2].getX(), pts[offset + 2].getY());
- }
-
- /**
- * Sets the location of the endpoints and controlpoint of this
- * <code>QuadCurve2D</code> to the same as those in the specified
- * <code>QuadCurve2D</code>.
- * @param c the specified <code>QuadCurve2D</code>
- */
- public void setCurve(QuadCurve2D c) {
- setCurve(c.getX1(), c.getY1(),
- c.getCtrlX(), c.getCtrlY(),
- c.getX2(), c.getY2());
- }
-
- /**
- * Returns the square of the flatness, or maximum distance of a
- * controlpoint from the line connecting the endpoints, of the
- * quadratic curve specified by the indicated controlpoints.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- * @return the square of the flatness of the quadratic curve
- * defined by the specified coordinates.
- */
- public static double getFlatnessSq(double x1, double y1,
- double ctrlx, double ctrly,
- double x2, double y2) {
- return Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx, ctrly);
- }
-
- /**
- * Returns the flatness, or maximum distance of a
- * controlpoint from the line connecting the endpoints, of the
- * quadratic curve specified by the indicated controlpoints.
- * @param x1, y1 the coordinates of the starting point
- * @param ctrlx, ctrly the coordinates of the control point
- * @param x2, y2 the coordinates of the ending point
- * @return the flatness of the quadratic curve defined by the
- * specified coordinates.
- */
- public static double getFlatness(double x1, double y1,
- double ctrlx, double ctrly,
- double x2, double y2) {
- return Line2D.ptSegDist(x1, y1, x2, y2, ctrlx, ctrly);
- }
-
- /**
- * Returns the square of the flatness, or maximum distance of a
- * controlpoint from the line connecting the endpoints, of the
- * quadratic curve specified by the controlpoints stored in the
- * indicated array at the indicated index.
- * @param coords an array containing coordinate values
- * @param offset the index into <code>coords</code> at which to
- * to start getting the values from the array and
- * assigning them to a quadratic curve
- * @return the flatness of the quadratic curve that is defined by the
- * values in the specified array at the specified index.
- */
- public static double getFlatnessSq(double coords[], int offset) {
- return Line2D.ptSegDistSq(coords[offset + 0], coords[offset + 1],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 2], coords[offset + 3]);
- }
-
- /**
- * Returns the flatness, or maximum distance of a
- * controlpoint from the line connecting the endpoints, of the
- * quadratic curve specified by the controlpoints stored in the
- * indicated array at the indicated index.
- * @param coords an array containing coordinate values
- * @param offset the index into <code>coords</code> at which to
- * start getting the coordinate values and assigning
- * them to a quadratic curve
- * @return the flatness of a quadratic curve defined by the
- * specified array at the specified offset.
- */
- public static double getFlatness(double coords[], int offset) {
- return Line2D.ptSegDist(coords[offset + 0], coords[offset + 1],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 2], coords[offset + 3]);
- }
-
- /**
- * Returns the square of the flatness, or maximum distance of a
- * controlpoint from the line connecting the endpoints, of this
- * <code>QuadCurve2D</code>.
- * @return the square of the flatness of this
- * <code>QuadCurve2D</code>.
- */
- public double getFlatnessSq() {
- return Line2D.ptSegDistSq(getX1(), getY1(),
- getX2(), getY2(),
- getCtrlX(), getCtrlY());
- }
-
- /**
- * Returns the flatness, or maximum distance of a
- * controlpoint from the line connecting the endpoints, of this
- * <code>QuadCurve2D</code>.
- * @return the flatness of this <code>QuadCurve2D</code>.
- */
- public double getFlatness() {
- return Line2D.ptSegDist(getX1(), getY1(),
- getX2(), getY2(),
- getCtrlX(), getCtrlY());
- }
-
- /**
- * Subdivides this <code>QuadCurve2D</code> and stores the resulting
- * two subdivided curves into the <code>left</code> and
- * <code>right</code> curve parameters.
- * Either or both of the <code>left</code> and <code>right</code>
- * objects can be the same as this <code>QuadCurve2D</code> or
- * <code>null</code>.
- * @param left the <code>QuadCurve2D</code> object for storing the
- * left or first half of the subdivided curve
- * @param right the <code>QuadCurve2D</code> object for storing the
- * right or second half of the subdivided curve
- */
- public void subdivide(QuadCurve2D left, QuadCurve2D right) {
- subdivide(this, left, right);
- }
-
- /**
- * Subdivides the quadratic curve specified by the <code>src</code>
- * parameter and stores the resulting two subdivided curves into the
- * <code>left</code> and <code>right</code> curve parameters.
- * Either or both of the <code>left</code> and <code>right</code>
- * objects can be the same as the <code>src</code> object or
- * <code>null</code>.
- * @param src the quadratic curve to be subdivided
- * @param left the <code>QuadCurve2D</code> object for storing the
- * left or first half of the subdivided curve
- * @param right the <code>QuadCurve2D</code> object for storing the
- * right or second half of the subdivided curve
- */
- public static void subdivide(QuadCurve2D src,
- QuadCurve2D left,
- QuadCurve2D right) {
- double x1 = src.getX1();
- double y1 = src.getY1();
- double ctrlx = src.getCtrlX();
- double ctrly = src.getCtrlY();
- double x2 = src.getX2();
- double y2 = src.getY2();
- double ctrlx1 = (x1 + ctrlx) / 2.0;
- double ctrly1 = (y1 + ctrly) / 2.0;
- double ctrlx2 = (x2 + ctrlx) / 2.0;
- double ctrly2 = (y2 + ctrly) / 2.0;
- ctrlx = (ctrlx1 + ctrlx2) / 2.0;
- ctrly = (ctrly1 + ctrly2) / 2.0;
- if (left != null) {
- left.setCurve(x1, y1, ctrlx1, ctrly1, ctrlx, ctrly);
- }
- if (right != null) {
- right.setCurve(ctrlx, ctrly, ctrlx2, ctrly2, x2, y2);
- }
- }
-
- /**
- * Subdivides the quadratic curve specified by the coordinates
- * stored in the <code>src</code> array at indices
- * <code>srcoff</code> through <code>srcoff</code> + 5
- * and stores the resulting two subdivided curves into the two
- * result arrays at the corresponding indices.
- * Either or both of the <code>left</code> and <code>right</code>
- * arrays can be <code>null</code> or a reference to the same array
- * and offset as the <code>src</code> array.
- * Note that the last point in the first subdivided curve is the
- * same as the first point in the second subdivided curve. Thus,
- * it is possible to pass the same array for <code>left</code> and
- * <code>right</code> and to use offsets such that
- * <code>rightoff</code> equals <code>leftoff</code> + 4 in order
- * to avoid allocating extra storage for this common point.
- * @param src the array holding the coordinates for the source curve
- * @param srcoff the offset into the array of the beginning of the
- * the 6 source coordinates
- * @param left the array for storing the coordinates for the first
- * half of the subdivided curve
- * @param leftoff the offset into the array of the beginning of the
- * the 6 left coordinates
- * @param right the array for storing the coordinates for the second
- * half of the subdivided curve
- * @param rightoff the offset into the array of the beginning of the
- * the 6 right coordinates
- */
- public static void subdivide(double src[], int srcoff,
- double left[], int leftoff,
- double right[], int rightoff) {
- double x1 = src[srcoff + 0];
- double y1 = src[srcoff + 1];
- double ctrlx = src[srcoff + 2];
- double ctrly = src[srcoff + 3];
- double x2 = src[srcoff + 4];
- double y2 = src[srcoff + 5];
- if (left != null) {
- left[leftoff + 0] = x1;
- left[leftoff + 1] = y1;
- }
- if (right != null) {
- right[rightoff + 4] = x2;
- right[rightoff + 5] = y2;
- }
- x1 = (x1 + ctrlx) / 2.0;
- y1 = (y1 + ctrly) / 2.0;
- x2 = (x2 + ctrlx) / 2.0;
- y2 = (y2 + ctrly) / 2.0;
- ctrlx = (x1 + x2) / 2.0;
- ctrly = (y1 + y2) / 2.0;
- if (left != null) {
- left[leftoff + 2] = x1;
- left[leftoff + 3] = y1;
- left[leftoff + 4] = ctrlx;
- left[leftoff + 5] = ctrly;
- }
- if (right != null) {
- right[rightoff + 0] = ctrlx;
- right[rightoff + 1] = ctrly;
- right[rightoff + 2] = x2;
- right[rightoff + 3] = y2;
- }
- }
-
- /**
- * Solves the quadratic whose coefficients are in the <code>eqn</code>
- * array and places the non-complex roots back into the same array,
- * returning the number of roots. The quadratic solved is represented
- * by the equation:
- * <pre>
- * eqn = {C, B, A};
- * ax^2 + bx + c = 0
- * </pre>
- * A return value of <code>-1</code> is used to distinguish a constant
- * equation, which might be always 0 or never 0, from an equation that
- * has no zeroes.
- * @param eqn the array that contains the quadratic coefficients
- * @return the number of roots, or <code>-1</code> if the equation is
- * a constant
- */
- public static int solveQuadratic(double eqn[]) {
- return solveQuadratic(eqn, eqn);
- }
-
- /**
- * Solves the quadratic whose coefficients are in the <code>eqn</code>
- * array and places the non-complex roots into the <code>res</code>
- * array, returning the number of roots.
- * The quadratic solved is represented by the equation:
- * <pre>
- * eqn = {C, B, A};
- * ax^2 + bx + c = 0
- * </pre>
- * A return value of <code>-1</code> is used to distinguish a constant
- * equation, which might be always 0 or never 0, from an equation that
- * has no zeroes.
- * @param eqn the specified array of coefficients to use to solve
- * the quadratic equation
- * @param res the array that contains the non-complex roots
- * resulting from the solution of the quadratic equation
- * @return the number of roots, or <code>-1</code> if the equation is
- * a constant.
- */
- public static int solveQuadratic(double eqn[], double res[]) {
- double a = eqn[2];
- double b = eqn[1];
- double c = eqn[0];
- int roots = 0;
- if (a == 0.0) {
- // The quadratic parabola has degenerated to a line.
- if (b == 0.0) {
- // The line has degenerated to a constant.
- return -1;
- }
- res[roots++] = -c / b;
- } else {
- // From Numerical Recipes, 5.6, Quadratic and Cubic Equations
- double d = b * b - 4.0 * a * c;
- if (d < 0.0) {
- // If d < 0.0, then there are no roots
- return 0;
- }
- d = Math.sqrt(d);
- // For accuracy, calculate one root using:
- // (-b +/- d) / 2a
- // and the other using:
- // 2c / (-b +/- d)
- // Choose the sign of the +/- so that b+d gets larger in magnitude
- if (b < 0.0) {
- d = -d;
- }
- double q = (b + d) / -2.0;
- // We already tested a for being 0 above
- res[roots++] = q / a;
- if (q != 0.0) {
- res[roots++] = c / q;
- }
- }
- return roots;
- }
-
- /**
- * Tests if a specified coordinate is inside the boundary of the
- * shape of this <code>QuadCurve2D</code>.
- * @param x, y the specified coordinates
- * @return <code>true</code> if the specified coordinate is inside
- * the boundary of the shape of this
- * <code>QuadCurve2D</code> <code>false</code> otherwise.
- */
- public boolean contains(double x, double y) {
-
- double x1 = getX1();
- double y1 = getY1();
- double xc = getCtrlX();
- double yc = getCtrlY();
- double x2 = getX2();
- double y2 = getY2();
-
- /*
- * We have a convex shape bounded by quad curve Pc(t)
- * and ine Pl(t).
- *
- * P1 = (x1, y1) - start point of curve
- * P2 = (x2, y2) - end point of curve
- * Pc = (xc, yc) - control point
- *
- * Pq(t) = P1*(1 - t)^2 + 2*Pc*t*(1 - t) + P2*t^2 =
- * = (P1 - 2*Pc + P2)*t^2 + 2*(Pc - P1)*t + P1
- * Pl(t) = P1*(1 - t) + P2*t
- * t = [0:1]
- *
- * P = (x, y) - point of interest
- *
- * Let's look at second derivative of quad curve equation:
- *
- * Pq''(t) = 2 * (P1 - 2 * Pc + P2) = Pq''
- * It's constant vector.
- *
- * Let's draw a line through P to be parallel to this
- * vector and find the intersection of the quad curve
- * and the line.
- *
- * Pq(t) is point of intersection if system of equations
- * below has the solution.
- *
- * L(s) = P + Pq''*s == Pq(t)
- * Pq''*s + (P - Pq(t)) == 0
- *
- * | xq''*s + (x - xq(t)) == 0
- * | yq''*s + (y - yq(t)) == 0
- *
- * This system has the solution if rank of its matrix equals to 1.
- * That is, determinant of the matrix should be zero.
- *
- * (y - yq(t))*xq'' == (x - xq(t))*yq''
- *
- * Let's solve this equation with 't' variable.
- * Also let kx = x1 - 2*xc + x2
- * ky = y1 - 2*yc + y2
- *
- * t0q = (1/2)*((x - x1)*ky - (y - y1)*kx) /
- * ((xc - x1)*ky - (yc - y1)*kx)
- *
- * Let's do the same for our line Pl(t):
- *
- * t0l = ((x - x1)*ky - (y - y1)*kx) /
- * ((x2 - x1)*ky - (y2 - y1)*kx)
- *
- * It's easy to check that t0q == t0l. This fact means
- * we can compute t0 only one time.
- *
- * In case t0 < 0 or t0 > 1, we have an intersections outside
- * of shape bounds. So, P is definitely out of shape.
- *
- * In case t0 is inside [0:1], we should calculate Pq(t0)
- * and Pl(t0). We have three points for now, and all of them
- * lie on one line. So, we just need to detect, is our point
- * of interest between points of intersections or not.
- *
- * If the denominator in the t0q and t0l equations is
- * zero, then the points must be collinear and so the
- * curve is degenerate and encloses no area. Thus the
- * result is false.
- */
- double kx = x1 - 2 * xc + x2;
- double ky = y1 - 2 * yc + y2;
- double dx = x - x1;
- double dy = y - y1;
- double dxl = x2 - x1;
- double dyl = y2 - y1;
-
- double t0 = (dx * ky - dy * kx) / (dxl * ky - dyl * kx);
- if (t0 < 0 || t0 > 1 || t0 != t0) {
- return false;
- }
-
- double xb = kx * t0 * t0 + 2 * (xc - x1) * t0 + x1;
- double yb = ky * t0 * t0 + 2 * (yc - y1) * t0 + y1;
- double xl = dxl * t0 + x1;
- double yl = dyl * t0 + y1;
-
- return (x >= xb && x < xl) ||
- (x >= xl && x < xb) ||
- (y >= yb && y < yl) ||
- (y >= yl && y < yb);
- }
-
- /**
- * Tests if a specified <code>Point2D</code> is inside the boundary of
- * the shape of this <code>QuadCurve2D</code>.
- * @param p the specified <code>Point2D</code>
- * @return <code>true</code> if the specified <code>Point2D</code> is
- * inside the boundary of the shape of this
- * <code>QuadCurve2D</code>.
- */
- public boolean contains(Point2D p) {
- return contains(p.getX(), p.getY());
- }
-
- /*
- * Fill an array with the coefficients of the parametric equation
- * in t, ready for solving against val with solveQuadratic.
- * We currently have:
- * val = Py(t) = C1*(1-t)^2 + 2*CP*t*(1-t) + C2*t^2
- * = C1 - 2*C1*t + C1*t^2 + 2*CP*t - 2*CP*t^2 + C2*t^2
- * = C1 + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2
- * 0 = (C1 - val) + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2
- * 0 = C + Bt + At^2
- * C = C1 - val
- * B = 2*CP - 2*C1
- * A = C1 - 2*CP + C2
- */
- private static void fillEqn(double eqn[], double val,
- double c1, double cp, double c2) {
- eqn[0] = c1 - val;
- eqn[1] = cp + cp - c1 - c1;
- eqn[2] = c1 - cp - cp + c2;
- return;
- }
-
- /*
- * Evaluate the t values in the first num slots of the vals[] array
- * and place the evaluated values back into the same array. Only
- * evaluate t values that are within the range <0, 1>, including
- * the 0 and 1 ends of the range iff the include0 or include1
- * booleans are true. If an "inflection" equation is handed in,
- * then any points which represent a point of inflection for that
- * quadratic equation are also ignored.
- */
- private static int evalQuadratic(double vals[], int num,
- boolean include0,
- boolean include1,
- double inflect[],
- double c1, double ctrl, double c2) {
- int j = 0;
- for (int i = 0; i < num; i++) {
- double t = vals[i];
- if ((include0 ? t >= 0 : t > 0) &&
- (include1 ? t <= 1 : t < 1) &&
- (inflect == null ||
- inflect[1] + 2*inflect[2]*t != 0))
- {
- double u = 1 - t;
- vals[j++] = c1*u*u + 2*ctrl*t*u + c2*t*t;
- }
- }
- return j;
- }
-
- private static final int BELOW = -2;
- private static final int LOWEDGE = -1;
- private static final int INSIDE = 0;
- private static final int HIGHEDGE = 1;
- private static final int ABOVE = 2;
-
- /*
- * Determine where coord lies with respect to the range from
- * low to high. It is assumed that low <= high. The return
- * value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE,
- * or ABOVE.
- */
- private static int getTag(double coord, double low, double high) {
- if (coord <= low) {
- return (coord < low ? BELOW : LOWEDGE);
- }
- if (coord >= high) {
- return (coord > high ? ABOVE : HIGHEDGE);
- }
- return INSIDE;
- }
-
- /*
- * Determine if the pttag represents a coordinate that is already
- * in its test range, or is on the border with either of the two
- * opttags representing another coordinate that is "towards the
- * inside" of that test range. In other words, are either of the
- * two "opt" points "drawing the pt inward"?
- */
- private static boolean inwards(int pttag, int opt1tag, int opt2tag) {
- switch (pttag) {
- case BELOW:
- case ABOVE:
- default:
- return false;
- case LOWEDGE:
- return (opt1tag >= INSIDE || opt2tag >= INSIDE);
- case INSIDE:
- return true;
- case HIGHEDGE:
- return (opt1tag <= INSIDE || opt2tag <= INSIDE);
- }
- }
-
- /**
- * Tests if the shape of this <code>QuadCurve2D</code> intersects the
- * interior of a specified set of rectangular coordinates.
- * @param x, y the coordinates of the upper-left corner of the
- * specified rectangular area
- * @param w the width of the specified rectangular area
- * @param h the height of the specified rectangular area
- * @return <code>true</code> if the shape of this
- * <code>QuadCurve2D</code> intersects the interior of the
- * specified set of rectangular coordinates;
- * <code>false</code> otherwise.
- */
- public boolean intersects(double x, double y, double w, double h) {
- // Trivially reject non-existant rectangles
- if (w < 0 || h < 0) {
- return false;
- }
-
- // Trivially accept if either endpoint is inside the rectangle
- // (not on its border since it may end there and not go inside)
- // Record where they lie with respect to the rectangle.
- // -1 => left, 0 => inside, 1 => right
- double x1 = getX1();
- double y1 = getY1();
- int x1tag = getTag(x1, x, x+w);
- int y1tag = getTag(y1, y, y+h);
- if (x1tag == INSIDE && y1tag == INSIDE) {
- return true;
- }
- double x2 = getX2();
- double y2 = getY2();
- int x2tag = getTag(x2, x, x+w);
- int y2tag = getTag(y2, y, y+h);
- if (x2tag == INSIDE && y2tag == INSIDE) {
- return true;
- }
- double ctrlx = getCtrlX();
- double ctrly = getCtrlY();
- int ctrlxtag = getTag(ctrlx, x, x+w);
- int ctrlytag = getTag(ctrly, y, y+h);
-
- // Trivially reject if all points are entirely to one side of
- // the rectangle.
- if (x1tag < INSIDE && x2tag < INSIDE && ctrlxtag < INSIDE) {
- return false; // All points left
- }
- if (y1tag < INSIDE && y2tag < INSIDE && ctrlytag < INSIDE) {
- return false; // All points above
- }
- if (x1tag > INSIDE && x2tag > INSIDE && ctrlxtag > INSIDE) {
- return false; // All points right
- }
- if (y1tag > INSIDE && y2tag > INSIDE && ctrlytag > INSIDE) {
- return false; // All points below
- }
-
- // Test for endpoints on the edge where either the segment
- // or the curve is headed "inwards" from them
- // Note: These tests are a superset of the fast endpoint tests
- // above and thus repeat those tests, but take more time
- // and cover more cases
- if (inwards(x1tag, x2tag, ctrlxtag) &&
- inwards(y1tag, y2tag, ctrlytag))
- {
- // First endpoint on border with either edge moving inside
- return true;
- }
- if (inwards(x2tag, x1tag, ctrlxtag) &&
- inwards(y2tag, y1tag, ctrlytag))
- {
- // Second endpoint on border with either edge moving inside
- return true;
- }
-
- // Trivially accept if endpoints span directly across the rectangle
- boolean xoverlap = (x1tag * x2tag <= 0);
- boolean yoverlap = (y1tag * y2tag <= 0);
- if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) {
- return true;
- }
- if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) {
- return true;
- }
-
- // We now know that both endpoints are outside the rectangle
- // but the 3 points are not all on one side of the rectangle.
- // Therefore the curve cannot be contained inside the rectangle,
- // but the rectangle might be contained inside the curve, or
- // the curve might intersect the boundary of the rectangle.
-
- double[] eqn = new double[3];
- double[] res = new double[3];
- if (!yoverlap) {
- // Both y coordinates for the closing segment are above or
- // below the rectangle which means that we can only intersect
- // if the curve crosses the top (or bottom) of the rectangle
- // in more than one place and if those crossing locations
- // span the horizontal range of the rectangle.
- fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly, y2);
- return (solveQuadratic(eqn, res) == 2 &&
- evalQuadratic(res, 2, true, true, null,
- x1, ctrlx, x2) == 2 &&
- getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0);
- }
-
- // Y ranges overlap. Now we examine the X ranges
- if (!xoverlap) {
- // Both x coordinates for the closing segment are left of
- // or right of the rectangle which means that we can only
- // intersect if the curve crosses the left (or right) edge
- // of the rectangle in more than one place and if those
- // crossing locations span the vertical range of the rectangle.
- fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx, x2);
- return (solveQuadratic(eqn, res) == 2 &&
- evalQuadratic(res, 2, true, true, null,
- y1, ctrly, y2) == 2 &&
- getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0);
- }
-
- // The X and Y ranges of the endpoints overlap the X and Y
- // ranges of the rectangle, now find out how the endpoint
- // line segment intersects the Y range of the rectangle
- double dx = x2 - x1;
- double dy = y2 - y1;
- double k = y2 * x1 - x2 * y1;
- int c1tag, c2tag;
- if (y1tag == INSIDE) {
- c1tag = x1tag;
- } else {
- c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w);
- }
- if (y2tag == INSIDE) {
- c2tag = x2tag;
- } else {
- c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w);
- }
- // If the part of the line segment that intersects the Y range
- // of the rectangle crosses it horizontally - trivially accept
- if (c1tag * c2tag <= 0) {
- return true;
- }
-
- // Now we know that both the X and Y ranges intersect and that
- // the endpoint line segment does not directly cross the rectangle.
- //
- // We can almost treat this case like one of the cases above
- // where both endpoints are to one side, except that we will
- // only get one intersection of the curve with the vertical
- // side of the rectangle. This is because the endpoint segment
- // accounts for the other intersection.
- //
- // (Remember there is overlap in both the X and Y ranges which
- // means that the segment must cross at least one vertical edge
- // of the rectangle - in particular, the "near vertical side" -
- // leaving only one intersection for the curve.)
- //
- // Now we calculate the y tags of the two intersections on the
- // "near vertical side" of the rectangle. We will have one with
- // the endpoint segment, and one with the curve. If those two
- // vertical intersections overlap the Y range of the rectangle,
- // we have an intersection. Otherwise, we don't.
-
- // c1tag = vertical intersection class of the endpoint segment
- //
- // Choose the y tag of the endpoint that was not on the same
- // side of the rectangle as the subsegment calculated above.
- // Note that we can "steal" the existing Y tag of that endpoint
- // since it will be provably the same as the vertical intersection.
- c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag);
-
- // c2tag = vertical intersection class of the curve
- //
- // We have to calculate this one the straightforward way.
- // Note that the c2tag can still tell us which vertical edge
- // to test against.
- fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx, x2);
- int num = solveQuadratic(eqn, res);
-
- // Note: We should be able to assert(num == 2); since the
- // X range "crosses" (not touches) the vertical boundary,
- // but we pass num to evalQuadratic for completeness.
- evalQuadratic(res, num, true, true, null, y1, ctrly, y2);
-
- // Note: We can assert(num evals == 1); since one of the
- // 2 crossings will be out of the [0,1] range.
- c2tag = getTag(res[0], y, y+h);
-
- // Finally, we have an intersection if the two crossings
- // overlap the Y range of the rectangle.
- return (c1tag * c2tag <= 0);
- }
-
- /**
- * Tests if the shape of this <code>QuadCurve2D</code> intersects the
- * interior of a specified <code>Rectangle2D</code>.
- * @param r the specified <code>Rectangle2D</code>
- * @return <code>true</code> if the shape of this
- * <code>QuadCurve2D</code> intersects the interior of
- * the specified <code>Rectangle2D</code>
- * <code>false</code> otherwise.
- */
- public boolean intersects(Rectangle2D r) {
- return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Tests if the interior of the shape of this
- * <code>QuadCurve2D</code> entirely contains the specified
- * set of rectangular coordinates.
- * @param x, y the coordinates of the upper-left corner of the
- * specified rectangular area
- * @param w the width of the specified rectangular area
- * @param h the height of the specified rectangular area
- * @return <code>true</code> if the interior of the shape of this
- * <code>QuadCurve2D</code> entirely contains the specified
- * rectangluar area; <code>false</code> otherwise.
- */
- public boolean contains(double x, double y, double w, double h) {
- // Assertion: Quadratic curves closed by connecting their
- // endpoints are always convex.
- return (contains(x, y) &&
- contains(x + w, y) &&
- contains(x + w, y + h) &&
- contains(x, y + h));
- }
-
- /**
- * Tests if the interior of the shape of this
- * <code>QuadCurve2D</code> entirely contains the specified
- * <code>Rectangle2D</code>.
- * @param r the specified <code>Rectangle2D</code>
- * @return <code>true</code> if the interior of the shape of this
- * <code>QuadCurve2D</code> entirely contains the specified
- * <code>Rectangle2D</code> <code>false</code> otherwise.
- */
- public boolean contains(Rectangle2D r) {
- return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Returns the bounding box of this <code>QuadCurve2D</code>.
- * @return a {@link Rectangle} that is the bounding box of the shape
- * of this <code>QuadCurve2D</code>.
- */
- public Rectangle getBounds() {
- return getBounds2D().getBounds();
- }
-
- /**
- * Returns an iteration object that defines the boundary of the
- * shape of this <code>QuadCurve2D</code>.
- * The iterator for this class is not multi-threaded safe,
- * which means that this <code>QuadCurve2D</code> class does not
- * guarantee that modifications to the geometry of this
- * <code>QuadCurve2D</code> object do not affect any iterations of
- * that geometry that are already in process.
- * @param at an optional {@link AffineTransform} to apply to the
- * shape boundary
- * @return a {@link PathIterator} object that defines the boundary
- * of the shape.
- */
- public PathIterator getPathIterator(AffineTransform at) {
- return new QuadIterator(this, at);
- }
-
- /**
- * Returns an iteration object that defines the boundary of the
- * flattened shape of this <code>QuadCurve2D</code>.
- * The iterator for this class is not multi-threaded safe,
- * which means that this <code>QuadCurve2D</code> class does not
- * guarantee that modifications to the geometry of this
- * <code>QuadCurve2D</code> object do not affect any iterations of
- * that geometry that are already in process.
- * @param at an optional <code>AffineTransform</code> to apply
- * to the boundary of the shape
- * @param flatness the maximum distance that the control points for a
- * subdivided curve can be with respect to a line connecting
- * the endpoints of this curve before this curve is
- * replaced by a straight line connecting the endpoints.
- * @return a <code>PathIterator</code> object that defines the
- * flattened boundary of the shape.
- */
- public PathIterator getPathIterator(AffineTransform at, double flatness) {
- return new FlatteningPathIterator(getPathIterator(at), flatness);
- }
-
- /**
- * Creates a new object of the same class and with the same contents
- * as this object.
- *
- * @return a clone of this instance.
- * @exception OutOfMemoryError if there is not enough memory.
- * @see java.lang.Cloneable
- * @since 1.2
- */
- public Object clone() {
- try {
- return super.clone();
- } catch (CloneNotSupportedException e) {
- // this shouldn't happen, since we are Cloneable
- throw new InternalError();
- }
- }
- }