- /*
- * @(#)BigDecimal.java 1.53 04/06/28
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- /*
- * @(#)BigDecimal.java 1.x 01/xx/xx
- *
- * Copyright 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
- * Portions Copyright IBM Corporation, 2001. All Rights Reserved.
- *
- * This software is the proprietary information of Sun Microsystems, Inc.
- * Use is subject to license terms.
- *
- */
-
- package java.math;
-
- /**
- * Immutable, arbitrary-precision signed decimal numbers. A
- * <tt>BigDecimal</tt> consists of an arbitrary precision integer
- * <i>unscaled value</i> and a 32-bit integer <i>scale</i>. If zero
- * or positive, the scale is the number of digits to the right of the
- * decimal point. If negative, the unscaled value of the number is
- * multiplied by ten to the power of the negation of the scale. The
- * value of the number represented by the <tt>BigDecimal</tt> is
- * therefore <tt>(unscaledValue × 10<sup>-scale</sup>)</tt>.
- *
- * <p>The <tt>BigDecimal</tt> class provides operations for
- * arithmetic, scale manipulation, rounding, comparison, hashing, and
- * format conversion. The {@link #toString} method provides a
- * canonical representation of a <tt>BigDecimal</tt>.
- *
- * <p>The <tt>BigDecimal</tt> class gives its user complete control
- * over rounding behavior. If no rounding mode is specified and the
- * exact result cannot be represented, an exception is thrown;
- * otherwise, calculations can be carried out to a chosen precision
- * and rounding mode by supplying an appropriate {@link MathContext}
- * object to the operation. In either case, eight <em>rounding
- * modes</em> are provided for the control of rounding. Using the
- * integer fields in this class (such as {@link #ROUND_HALF_UP}) to
- * represent rounding mode is largely obsolete; the enumeration values
- * of the <tt>RoundingMode</tt> <tt>enum</tt>, (such as {@link
- * RoundingMode#HALF_UP}) should be used instead.
- *
- * <p>When a <tt>MathContext</tt> object is supplied with a precision
- * setting of 0 (for example, {@link MathContext#UNLIMITED}),
- * arithmetic operations are exact, as are the arithmetic methods
- * which take no <tt>MathContext</tt> object. (This is the only
- * behavior that was supported in releases prior to 5.) As a
- * corollary of computing the exact result, the rounding mode setting
- * of a <tt>MathContext</tt> object with a precision setting of 0 is
- * not used and thus irrelevant. In the case of divide, the exact
- * quotient could have an infinitely long decimal expansion; for
- * example, 1 divided by 3. If the quotient has a nonterminating
- * decimal expansion and the operation is specified to return an exact
- * result, an <tt>ArithmeticException</tt> is thrown. Otherwise, the
- * exact result of the division is returned, as done for other
- * operations.
- *
- * <p>When the precision setting is not 0, the rules of
- * <tt>BigDecimal</tt> arithmetic are broadly compatible with selected
- * modes of operation of the arithmetic defined in ANSI X3.274-1996
- * and ANSI X3.274-1996/AM 1-2000 (section 7.4). Unlike those
- * standards, <tt>BigDecimal</tt> includes many rounding modes, which
- * were mandatory for division in <tt>BigDecimal</tt> releases prior
- * to 5. Any conflicts between these ANSI standards and the
- * <tt>BigDecimal</tt> specification are resolved in favor of
- * <tt>BigDecimal</tt>.
- *
- * <p>Since the same numerical value can have different
- * representations (with different scales), the rules of arithmetic
- * and rounding must specify both the numerical result and the scale
- * used in the result's representation.
- *
- *
- * <p>In general the rounding modes and precision setting determine
- * how operations return results with a limited number of digits when
- * the exact result has more digits (perhaps infinitely many in the
- * case of division) than the number of digits returned.
- *
- * First, the
- * total number of digits to return is specified by the
- * <tt>MathContext</tt>'s <tt>precision</tt> setting; this determines
- * the result's <i>precision</i>. The digit count starts from the
- * leftmost nonzero digit of the exact result. The rounding mode
- * determines how any discarded trailing digits affect the returned
- * result.
- *
- * <p>For all arithmetic operators , the operation is carried out as
- * though an exact intermediate result were first calculated and then
- * rounded to the number of digits specified by the precision setting
- * (if necessary), using the selected rounding mode. If the exact
- * result is not returned, some digit positions of the exact result
- * are discarded. When rounding increases the magnitude of the
- * returned result, it is possible for a new digit position to be
- * created by a carry propagating to a leading "9" digit.
- * For example, rounding the value 999.9 to three digits rounding up
- * would be numerically equal to one thousand, represented as
- * 100×10<sup>1</sup>. In such cases, the new "1" is
- * the leading digit position of the returned result.
- *
- * <p>Besides a logical exact result, each arithmetic operation has a
- * preferred scale for representing a result. The preferred
- * scale for each operation is listed in the table below.
- *
- * <table border>
- * <caption top><h3>Preferred Scales for Results of Arithmetic Operations
- * </h3></caption>
- * <tr><th>Operation</th><th>Preferred Scale of Result</th></tr>
- * <tr><td>Add</td><td>max(addend.scale(), augend.scale())</td>
- * <tr><td>Subtract</td><td>max(minuend.scale(), subtrahend.scale())</td>
- * <tr><td>Multiply</td><td>multiplier.scale() + multiplicand.scale()</td>
- * <tr><td>Divide</td><td>dividend.scale() - divisor.scale()</td>
- * </table>
- *
- * These scales are the ones used by the methods which return exact
- * arithmetic results; except that an exact divide may have to use a
- * larger scale since the exact result may have more digits. For
- * example, <tt>1/32</tt> is <tt>0.03125</tt>.
- *
- * <p>Before rounding, the scale of the logical exact intermediate
- * result is the preferred scale for that operation. If the exact
- * numerical result cannot be represented in <code>precision</code>
- * digits, rounding selects the set of digits to return and the scale
- * of the result is reduced from the scale of the intermediate result
- * to the least scale which can represent the <code>precision</code>
- * digits actually returned. If the exact result can be represented
- * with at most <code>precision</code> digits, the representation
- * of the result with the scale closest to the preferred scale is
- * returned. In particular, an exactly representable quotient may be
- * represented in fewer than <code>precision</code> digits by removing
- * trailing zeros and decreasing the scale. For example, rounding to
- * three digits using the {@linkplain RoundingMode#FLOOR floor}
- * rounding mode, <br>
- *
- * <code>19/100 = 0.19 // integer=19, scale=2</code> <br>
- *
- * but<br>
- *
- * <code>21/110 = 0.190 // integer=190, scale=3</code> <br>
- *
- * <p>Note that for add, subtract, and multiply, the reduction in
- * scale will equal the number of digit positions of the exact result
- * which are discarded. If the rounding causes a carry propagation to
- * create a new high-order digit position, an additional digit of the
- * result is discarded than when no new digit position is created.
- *
- * <p>Other methods may have slightly different rounding semantics.
- * For example, the result of the <tt>pow</tt> method using the
- * {@linkplain #pow(int, MathContext) specified algorithm} can
- * occasionally differ from the rounded mathematical result by more
- * than one unit in the last place, one <i>{@linkplain #ulp() ulp}</i>.
- *
- * <p>Two types of operations are provided for manipulating the scale
- * of a <tt>BigDecimal</tt>: scaling/rounding operations and decimal
- * point motion operations. Scaling/rounding operations ({@link
- * #setScale setScale} and {@link #round round}) return a
- * <tt>BigDecimal</tt> whose value is approximately (or exactly) equal
- * to that of the operand, but whose scale or precision is the
- * specified value; that is, they increase or decrease the precision
- * of the stored number with minimal effect on its value. Decimal
- * point motion operations ({@link #movePointLeft movePointLeft} and
- * {@link #movePointRight movePointRight}) return a
- * <tt>BigDecimal</tt> created from the operand by moving the decimal
- * point a specified distance in the specified direction.
- *
- * <p>For the sake of brevity and clarity, pseudo-code is used
- * throughout the descriptions of <tt>BigDecimal</tt> methods. The
- * pseudo-code expression <tt>(i + j)</tt> is shorthand for "a
- * <tt>BigDecimal</tt> whose value is that of the <tt>BigDecimal</tt>
- * <tt>i</tt> added to that of the <tt>BigDecimal</tt>
- * <tt>j</tt>." The pseudo-code expression <tt>(i == j)</tt> is
- * shorthand for "<tt>true</tt> if and only if the
- * <tt>BigDecimal</tt> <tt>i</tt> represents the same value as the
- * <tt>BigDecimal</tt> <tt>j</tt>." Other pseudo-code expressions
- * are interpreted similarly. Square brackets are used to represent
- * the particular <tt>BigInteger</tt> and scale pair defining a
- * <tt>BigDecimal</tt> value; for example [19, 2] is the
- * <tt>BigDecimal</tt> numerically equal to 0.19 having a scale of 2.
- *
- * <p>Note: care should be exercised if <tt>BigDecimal</tt> objects
- * are used as keys in a {@link java.util.SortedMap SortedMap} or
- * elements in a {@link java.util.SortedSet SortedSet} since
- * <tt>BigDecimal</tt>'s <i>natural ordering</i> is <i>inconsistent
- * with equals</i>. See {@link Comparable}, {@link
- * java.util.SortedMap} or {@link java.util.SortedSet} for more
- * information.
- *
- * <p>All methods and constructors for this class throw
- * <tt>NullPointerException</tt> when passed a <tt>null</tt> object
- * reference for any input parameter.
- *
- * @see BigInteger
- * @see MathContext
- * @see RoundingMode
- * @see java.util.SortedMap
- * @see java.util.SortedSet
- * @author Josh Bloch
- * @author Mike Cowlishaw
- * @author Joseph D. Darcy
- */
- public class BigDecimal extends Number implements Comparable<BigDecimal> {
- /**
- * The unscaled value of this BigDecimal, as returned by {@link
- * #unscaledValue}.
- *
- * @serial
- * @see #unscaledValue
- */
- private BigInteger intVal;
-
- /**
- * The scale of this BigDecimal, as returned by {@link #scale}.
- *
- * @serial
- * @see #scale
- */
- private int scale = 0; // Note: this may have any value, so
- // calculations must be done in longs
- /**
- * The number of decimal digits in this BigDecimal, or 0 if the
- * number of digits are not known (lookaside information). If
- * nonzero, the value is guaranteed correct. Use the precision()
- * method to obtain and set the value if it might be 0. This
- * field is mutable until set nonzero.
- *
- * @since 1.5
- */
- private volatile transient int precision = 0;
-
- /* Appease the serialization gods */
- private static final long serialVersionUID = 6108874887143696463L;
-
- // Constants
- /**
- * The value 0, with a scale of 0.
- *
- * @since 1.5
- */
- public static final BigDecimal ZERO =
- new BigDecimal(BigInteger.ZERO, 0);
-
- /**
- * The value 1, with a scale of 0.
- *
- * @since 1.5
- */
- public static final BigDecimal ONE =
- new BigDecimal(BigInteger.ONE, 0);
-
- /**
- * The value 10, with a scale of 0.
- *
- * @since 1.5
- */
- public static final BigDecimal TEN =
- new BigDecimal(BigInteger.TEN, 0);
-
- // Constructors
-
- /**
- * Translates a character array representation of a
- * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
- * same sequence of characters as the {@link #BigDecimal(String)}
- * constructor, while allowing a sub-array to be specified.
- *
- * <p>Note that if the sequence of characters is already available
- * within a character array, using this constructor is faster than
- * converting the <tt>char</tt> array to string and using the
- * <tt>BigDecimal(String)</tt> constructor .
- *
- * @param in <tt>char</tt> array that is the source of characters.
- * @param offset first character in the array to inspect.
- * @param len number of characters to consider.
- * @throws NumberFormatException if <tt>in</tt> is not a valid
- * representation of a <tt>BigDecimal</tt> or the defined subarray
- * is not wholly within <tt>in</tt>.
- * @since 1.5
- */
- public BigDecimal(char[] in, int offset, int len) {
- // This is the primary string to BigDecimal constructor; all
- // incoming strings end up here; it uses explicit (inline)
- // parsing for speed and generates at most one intermediate
- // (temporary) object (a char[] array).
-
- // use array bounds checking to handle too-long, len == 0,
- // bad offset, etc.
- try {
- // handle the sign
- boolean isneg = false; // assume positive
- if (in[offset] == '-') {
- isneg = true; // leading minus means negative
- offset++;
- len--;
- } else if (in[offset] == '+') { // leading + allowed
- offset++;
- len--;
- }
-
- // should now be at numeric part of the significand
- int dotoff = -1; // '.' offset, -1 if none
- int cfirst = offset; // record start of integer
- long exp = 0; // exponent
- if (len > in.length) // protect against huge length
- throw new NumberFormatException();
- char coeff[] = new char[len]; // integer significand array
- char c; // work
-
- for (; len > 0; offset++, len--) {
- c = in[offset];
- if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
- // have digit
- coeff[precision] = c;
- precision++; // count of digits
- continue;
- }
- if (c == '.') {
- // have dot
- if (dotoff >= 0) // two dots
- throw new NumberFormatException();
- dotoff = offset;
- continue;
- }
- // exponent expected
- if ((c != 'e') && (c != 'E'))
- throw new NumberFormatException();
- offset++;
- c = in[offset];
- len--;
- boolean negexp = false;
- // optional sign
- if (c == '-' || c == '+') {
- negexp = (c == '-');
- offset++;
- c = in[offset];
- len--;
- }
- if (len <= 0 || len > 10) // no digits, or too long
- throw new NumberFormatException();
- // c now holds first digit of exponent
- for (;; len--) {
- int v;
- if (c >= '0' && c <= '9') {
- v = c - '0';
- } else {
- v = Character.digit(c, 10);
- if (v < 0) // not a digit
- throw new NumberFormatException();
- }
- exp = exp * 10 + v;
- if (len == 1)
- break; // that was final character
- offset++;
- c = in[offset];
- }
- if (negexp) // apply sign
- exp = -exp;
- // Next test is required for backwards compatibility
- if ((int)exp != exp) // overflow
- throw new NumberFormatException();
- break; // [saves a test]
- }
- // here when no characters left
- if (precision == 0) // no digits found
- throw new NumberFormatException();
-
- if (dotoff >= 0) { // had dot; set scale
- scale = precision - (dotoff - cfirst);
- // [cannot overflow]
- }
- if (exp != 0) { // had significant exponent
- try {
- scale = checkScale(-exp + scale); // adjust
- } catch (ArithmeticException e) {
- throw new NumberFormatException("Scale out of range.");
- }
- }
- // Remove leading zeros from precision (digits count)
- int first = 0;
- for (; coeff[first] == '0' && precision > 1; first++)
- precision--;
-
- // Set the significand ..
- // Copy significand to exact-sized array, with sign if
- // negative
- // Later use: BigInteger(coeff, first, precision) for
- // both cases, by allowing an extra char at the front of
- // coeff.
- char quick[];
- if (!isneg) {
- quick = new char[precision];
- System.arraycopy(coeff, first, quick, 0, precision);
- } else {
- quick = new char[precision+1];
- quick[0] = '-';
- System.arraycopy(coeff, first, quick, 1, precision);
- }
- intVal = new BigInteger(quick);
- // System.out.println(" new: " +intVal+" ["+scale+"] "+precision);
- } catch (ArrayIndexOutOfBoundsException e) {
- throw new NumberFormatException();
- } catch (NegativeArraySizeException e) {
- throw new NumberFormatException();
- }
- }
-
- /**
- * Translates a character array representation of a
- * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
- * same sequence of characters as the {@link #BigDecimal(String)}
- * constructor, while allowing a sub-array to be specified and
- * with rounding according to the context settings.
- *
- * <p>Note that if the sequence of characters is already available
- * within a character array, using this constructor is faster than
- * converting the <tt>char</tt> array to string and using the
- * <tt>BigDecimal(String)</tt> constructor .
- *
- * @param in <tt>char</tt> array that is the source of characters.
- * @param offset first character in the array to inspect.
- * @param len number of characters to consider..
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @throws NumberFormatException if <tt>in</tt> is not a valid
- * representation of a <tt>BigDecimal</tt> or the defined subarray
- * is not wholly within <tt>in</tt>.
- * @since 1.5
- */
- public BigDecimal(char[] in, int offset, int len, MathContext mc) {
- this(in, offset, len);
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- /**
- * Translates a character array representation of a
- * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
- * same sequence of characters as the {@link #BigDecimal(String)}
- * constructor.
- *
- * <p>Note that if the sequence of characters is already available
- * as a character array, using this constructor is faster than
- * converting the <tt>char</tt> array to string and using the
- * <tt>BigDecimal(String)</tt> constructor .
- *
- * @param in <tt>char</tt> array that is the source of characters.
- * @throws NumberFormatException if <tt>in</tt> is not a valid
- * representation of a <tt>BigDecimal</tt>.
- * @since 1.5
- */
- public BigDecimal(char[] in) {
- this(in, 0, in.length);
- }
-
- /**
- * Translates a character array representation of a
- * <tt>BigDecimal</tt> into a <tt>BigDecimal</tt>, accepting the
- * same sequence of characters as the {@link #BigDecimal(String)}
- * constructor and with rounding according to the context
- * settings.
- *
- * <p>Note that if the sequence of characters is already available
- * as a character array, using this constructor is faster than
- * converting the <tt>char</tt> array to string and using the
- * <tt>BigDecimal(String)</tt> constructor .
- *
- * @param in <tt>char</tt> array that is the source of characters.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @throws NumberFormatException if <tt>in</tt> is not a valid
- * representation of a <tt>BigDecimal</tt>.
- * @since 1.5
- */
- public BigDecimal(char[] in, MathContext mc) {
- this(in, 0, in.length, mc);
- }
-
- /**
- * Translates the string representation of a <tt>BigDecimal</tt>
- * into a <tt>BigDecimal</tt>. The string representation consists
- * of an optional sign, <tt>'+'</tt> (<tt>'\u002B'</tt>) or
- * <tt>'-'</tt> (<tt>'\u002D'</tt>), followed by a sequence of
- * zero or more decimal digits ("the integer"), optionally
- * followed by a fraction, optionally followed by an exponent.
- *
- * <p>The fraction consists of a decimal point followed by zero
- * or more decimal digits. The string must contain at least one
- * digit in either the integer or the fraction. The number formed
- * by the sign, the integer and the fraction is referred to as the
- * <i>significand</i>.
- *
- * <p>The exponent consists of the character <tt>'e'</tt>
- * (<tt>'\u0075'</tt>) or <tt>'E'</tt> (<tt>'\u0045'</tt>)
- * followed by one or more decimal digits. The value of the
- * exponent must lie between -{@link Integer#MAX_VALUE} ({@link
- * Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
- *
- * <p>More formally, the strings this constructor accepts are
- * described by the following grammar:
- * <blockquote>
- * <dl>
- * <dt><i>BigDecimalString:</i>
- * <dd><i>Sign<sub>opt</sub> Significand Exponent<sub>opt</sub></i>
- * <p>
- * <dt><i>Sign:</i>
- * <dd><tt>+</tt>
- * <dd><tt>-</tt>
- * <p>
- * <dt><i>Significand:</i>
- * <dd><i>IntegerPart</i> <tt>.</tt> <i>FractionPart<sub>opt</sub></i>
- * <dd><tt>.</tt> <i>FractionPart</i>
- * <dd><i>IntegerPart</i>
- * <p>
- * <dt><i>IntegerPart:
- * <dd>Digits</i>
- * <p>
- * <dt><i>FractionPart:
- * <dd>Digits</i>
- * <p>
- * <dt><i>Exponent:
- * <dd>ExponentIndicator SignedInteger</i>
- * <p>
- * <dt><i>ExponentIndicator:</i>
- * <dd><tt>e</tt>
- * <dd><tt>E</tt>
- * <p>
- * <dt><i>SignedInteger:
- * <dd>Sign<sub>opt</sub> Digits</i>
- * <p>
- * <dt><i>Digits:
- * <dd>Digit
- * <dd>Digits Digit</i>
- * <p>
- * <dt><i>Digit:</i>
- * <dd>any character for which {@link Character#isDigit}
- * returns <tt>true</tt>, including 0, 1, 2 ...
- * </dl>
- * </blockquote>
- *
- * <p>The scale of the returned <tt>BigDecimal</tt> will be the
- * number of digits in the fraction, or zero if the string
- * contains no decimal point, subject to adjustment for any
- * exponent; if the string contains an exponent, the exponent is
- * subtracted from the scale. The value of the resulting scale
- * must lie between <tt>Integer.MIN_VALUE</tt> and
- * <tt>Integer.MAX_VALUE</tt>, inclusive.
- *
- * <p>The character-to-digit mapping is provided by {@link
- * java.lang.Character#digit} set to convert to radix 10. The
- * String may not contain any extraneous characters (whitespace,
- * for example).
- *
- * <p><b>Examples:</b><br>
- * The value of the returned <tt>BigDecimal</tt> is equal to
- * <i>significand</i> × 10<sup> <i>exponent</i></sup>.
- * For each string on the left, the resulting representation
- * [<tt>BigInteger</tt>, <tt>scale</tt>] is shown on the right.
- * <pre>
- * "0" [0,0]
- * "0.00" [0,2]
- * "123" [123,0]
- * "-123" [-123,0]
- * "1.23E3" [123,-1]
- * "1.23E+3" [123,-1]
- * "12.3E+7" [123,-6]
- * "12.0" [120,1]
- * "12.3" [123,1]
- * "0.00123" [123,5]
- * "-1.23E-12" [-123,14]
- * "1234.5E-4" [12345,5]
- * "0E+7" [0,-7]
- * "-0" [0,0]
- * </pre>
- *
- * <p>Note: For values other than <tt>float</tt> and
- * <tt>double</tt> NaN and ±Infinity, this constructor is
- * compatible with the values returned by {@link Float#toString}
- * and {@link Double#toString}. This is generally the preferred
- * way to convert a <tt>float</tt> or <tt>double</tt> into a
- * BigDecimal, as it doesn't suffer from the unpredictability of
- * the {@link #BigDecimal(double)} constructor.
- *
- * @param val String representation of <tt>BigDecimal</tt>.
- *
- * @throws NumberFormatException if <tt>val</tt> is not a valid
- * representation of a <tt>BigDecimal</tt>.
- */
- public BigDecimal(String val) {
- this(val.toCharArray(), 0, val.length());
- }
-
- /**
- * Translates the string representation of a <tt>BigDecimal</tt>
- * into a <tt>BigDecimal</tt>, accepting the same strings as the
- * {@link #BigDecimal(String)} constructor, with rounding
- * according to the context settings.
- *
- * @param val string representation of a <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @throws NumberFormatException if <tt>val</tt> is not a valid
- * representation of a BigDecimal.
- * @since 1.5
- */
- public BigDecimal(String val, MathContext mc) {
- this(val.toCharArray(), 0, val.length());
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- /**
- * Translates a <tt>double</tt> into a <tt>BigDecimal</tt> which
- * is the exact decimal representation of the <tt>double</tt>'s
- * binary floating-point value. The scale of the returned
- * <tt>BigDecimal</tt> is the smallest value such that
- * <tt>(10<sup>scale</sup> × val)</tt> is an integer.
- * <p>
- * <b>Notes:</b>
- * <ol>
- * <li>
- * The results of this constructor can be somewhat unpredictable.
- * One might assume that writing <tt>new BigDecimal(0.1)</tt> in
- * Java creates a <tt>BigDecimal</tt> which is exactly equal to
- * 0.1 (an unscaled value of 1, with a scale of 1), but it is
- * actually equal to
- * 0.1000000000000000055511151231257827021181583404541015625.
- * This is because 0.1 cannot be represented exactly as a
- * <tt>double</tt> (or, for that matter, as a binary fraction of
- * any finite length). Thus, the value that is being passed
- * <i>in</i> to the constructor is not exactly equal to 0.1,
- * appearances notwithstanding.
- *
- * <li>
- * The <tt>String</tt> constructor, on the other hand, is
- * perfectly predictable: writing <tt>new BigDecimal("0.1")</tt>
- * creates a <tt>BigDecimal</tt> which is <i>exactly</i> equal to
- * 0.1, as one would expect. Therefore, it is generally
- * recommended that the {@linkplain #BigDecimal(String)
- * <tt>String</tt> constructor} be used in preference to this one.
- *
- * <li>
- * When a <tt>double</tt> must be used as a source for a
- * <tt>BigDecimal</tt>, note that this constructor provides an
- * exact conversion; it does not give the same result as
- * converting the <tt>double</tt> to a <tt>String</tt> using the
- * {@link Double#toString(double)} method and then using the
- * {@link #BigDecimal(String)} constructor. To get that result,
- * use the <tt>static</tt> {@link #valueOf(double)} method.
- * </ol>
- *
- * @param val <tt>double</tt> value to be converted to
- * <tt>BigDecimal</tt>.
- * @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
- */
- public BigDecimal(double val) {
- if (Double.isInfinite(val) || Double.isNaN(val))
- throw new NumberFormatException("Infinite or NaN");
-
- // Translate the double into sign, exponent and mantissa, according
- // to the formulae in JLS, Section 20.10.22.
- long valBits = Double.doubleToLongBits(val);
- int sign = ((valBits >> 63)==0 ? 1 : -1);
- int exponent = (int) ((valBits >> 52) & 0x7ffL);
- long mantissa = (exponent==0 ? (valBits & ((1L<<52) - 1)) << 1
- : (valBits & ((1L<<52) - 1)) | (1L<<52));
- exponent -= 1075;
- /* At this point, val == sign * mantissa * 2**exponent */
-
- /*
- * Special case zero to supress nonterminating normalization
- * and bogus scale calculation.
- */
- if (mantissa == 0) {
- intVal = BigInteger.ZERO;
- precision = 1;
- return;
- }
-
- /* Normalize */
- while((mantissa & 1) == 0) { /* i.e., Mantissa is even */
- mantissa >>= 1;
- exponent++;
- }
-
- /* Calculate intVal and scale */
- intVal = BigInteger.valueOf(sign*mantissa);
- if (exponent < 0) {
- intVal = intVal.multiply(BigInteger.valueOf(5).pow(-exponent));
- scale = -exponent;
- } else if (exponent > 0) {
- intVal = intVal.multiply(BigInteger.valueOf(2).pow(exponent));
- }
- }
-
- /**
- * Translates a <tt>double</tt> into a <tt>BigDecimal</tt>, with
- * rounding according to the context settings. The scale of the
- * <tt>BigDecimal</tt> is the smallest value such that
- * <tt>(10<sup>scale</sup> × val)</tt> is an integer.
- *
- * <p>The results of this constructor can be somewhat unpredictable
- * and its use is generally not recommended; see the notes under
- * the {@link #BigDecimal(double)} constructor.
- *
- * @param val <tt>double</tt> value to be converted to
- * <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * RoundingMode is UNNECESSARY.
- * @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
- * @since 1.5
- */
- public BigDecimal(double val, MathContext mc) {
- this(val);
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- /**
- * Translates a <tt>BigInteger</tt> into a <tt>BigDecimal</tt>.
- * The scale of the <tt>BigDecimal</tt> is zero.
- *
- * @param val <tt>BigInteger</tt> value to be converted to
- * <tt>BigDecimal</tt>.
- */
- public BigDecimal(BigInteger val) {
- intVal = val;
- }
-
- /**
- * Translates a <tt>BigInteger</tt> into a <tt>BigDecimal</tt>
- * rounding according to the context settings. The scale of the
- * <tt>BigDecimal</tt> is zero.
- *
- * @param val <tt>BigInteger</tt> value to be converted to
- * <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal(BigInteger val, MathContext mc) {
- intVal = val;
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- /**
- * Translates a <tt>BigInteger</tt> unscaled value and an
- * <tt>int</tt> scale into a <tt>BigDecimal</tt>. The value of
- * the <tt>BigDecimal</tt> is
- * <tt>(unscaledVal × 10<sup>-scale</sup>)</tt>.
- *
- * @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
- * @param scale scale of the <tt>BigDecimal</tt>.
- */
- public BigDecimal(BigInteger unscaledVal, int scale) {
- // Negative scales are now allowed
- intVal = unscaledVal;
- this.scale = scale;
- }
-
- /**
- * Translates a <tt>BigInteger</tt> unscaled value and an
- * <tt>int</tt> scale into a <tt>BigDecimal</tt>, with rounding
- * according to the context settings. The value of the
- * <tt>BigDecimal</tt> is <tt>(unscaledVal ×
- * 10<sup>-scale</sup>)</tt>, rounded according to the
- * <tt>precision</tt> and rounding mode settings.
- *
- * @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
- * @param scale scale of the <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
- intVal = unscaledVal;
- this.scale = scale;
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- /**
- * Translates an <tt>int</tt> into a <tt>BigDecimal</tt>. The
- * scale of the <tt>BigDecimal</tt> is zero.
- *
- * @param val <tt>int</tt> value to be converted to
- * <tt>BigDecimal</tt>.
- * @since 1.5
- */
- public BigDecimal(int val) {
- intVal = BigInteger.valueOf(val);
- }
-
- /**
- * Translates an <tt>int</tt> into a <tt>BigDecimal</tt>, with
- * rounding according to the context settings. The scale of the
- * <tt>BigDecimal</tt>, before any rounding, is zero.
- *
- * @param val <tt>int</tt> value to be converted to <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal(int val, MathContext mc) {
- intVal = BigInteger.valueOf(val);
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- /**
- * Translates a <tt>long</tt> into a <tt>BigDecimal</tt>. The
- * scale of the <tt>BigDecimal</tt> is zero.
- *
- * @param val <tt>long</tt> value to be converted to <tt>BigDecimal</tt>.
- * @since 1.5
- */
- public BigDecimal(long val) {
- intVal = BigInteger.valueOf(val);
- }
-
- /**
- * Translates a <tt>long</tt> into a <tt>BigDecimal</tt>, with
- * rounding according to the context settings. The scale of the
- * <tt>BigDecimal</tt>, before any rounding, is zero.
- *
- * @param val <tt>long</tt> value to be converted to <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal(long val, MathContext mc) {
- intVal = BigInteger.valueOf(val);
- if (mc.precision > 0)
- roundThis(mc);
- }
-
- // Static Factory Methods
-
- /**
- * Translates a <tt>long</tt> unscaled value and an
- * <tt>int</tt> scale into a <tt>BigDecimal</tt>. This
- * "static factory method" is provided in preference to
- * a (<tt>long</tt>, <tt>int</tt>) constructor because it
- * allows for reuse of frequently used <tt>BigDecimal</tt> values..
- *
- * @param unscaledVal unscaled value of the <tt>BigDecimal</tt>.
- * @param scale scale of the <tt>BigDecimal</tt>.
- * @return a <tt>BigDecimal</tt> whose value is
- * <tt>(unscaledVal × 10<sup>-scale</sup>)</tt>.
- */
- public static BigDecimal valueOf(long unscaledVal, int scale) {
- if (scale == 0) {
- if (unscaledVal == 0)
- return ZERO;
- if (unscaledVal == 1)
- return ONE;
- if (unscaledVal == 10)
- return TEN;
- }
- return new BigDecimal(BigInteger.valueOf(unscaledVal), scale);
- }
-
- /**
- * Translates a <tt>long</tt> value into a <tt>BigDecimal</tt>
- * with a scale of zero. This "static factory method"
- * is provided in preference to a (<tt>long</tt>) constructor
- * because it allows for reuse of frequently used
- * <tt>BigDecimal</tt> values.
- *
- * @param val value of the <tt>BigDecimal</tt>.
- * @return a <tt>BigDecimal</tt> whose value is <tt>val</tt>.
- */
- public static BigDecimal valueOf(long val) {
- return valueOf(val, 0);
- }
-
- /**
- * Translates a <tt>double</tt> into a <tt>BigDecimal</tt>, using
- * the <tt>double</tt>'s canonical string representation provided
- * by the {@link Double#toString(double)} method.
- *
- * <p><b>Note:</b> This is generally the preferred way to convert
- * a <tt>double</tt> (or <tt>float</tt>) into a
- * <tt>BigDecimal</tt>, as the value returned is equal to that
- * resulting from constructing a <tt>BigDecimal</tt> from the
- * result of using {@link Double#toString(double)}.
- *
- * @param val <tt>double</tt> to convert to a <tt>BigDecimal</tt>.
- * @return a <tt>BigDecimal</tt> whose value is equal to or approximately
- * equal to the value of <tt>val</tt>.
- * @throws NumberFormatException if <tt>val</tt> is infinite or NaN.
- * @since 1.5
- */
- public static BigDecimal valueOf(double val) {
- // Reminder: a zero double returns '0.0', so we cannot fastpath
- // to use the constant ZERO. This might be important enough to
- // justify a factory approach, a cache, or a few private
- // constants, later.
- return new BigDecimal(Double.toString(val));
- }
-
- // Arithmetic Operations
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this +
- * augend)</tt>, and whose scale is <tt>max(this.scale(),
- * augend.scale())</tt>.
- *
- * @param augend value to be added to this <tt>BigDecimal</tt>.
- * @return <tt>this + augend</tt>
- */
- public BigDecimal add(BigDecimal augend) {
- BigDecimal arg[] = new BigDecimal[2];
- arg[0] = this; arg[1] = augend;
- matchScale(arg);
- return new BigDecimal(arg[0].intVal.add(arg[1].intVal), arg[0].scale);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this + augend)</tt>,
- * with rounding according to the context settings.
- *
- * If either number is zero and the precision setting is nonzero then
- * the other number, rounded if necessary, is used as the result.
- *
- * @param augend value to be added to this <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @return <tt>this + augend</tt>, rounded as necessary.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal add(BigDecimal augend, MathContext mc) {
- if (mc.precision == 0)
- return add(augend);
- BigDecimal lhs = this;
-
- // If either number is zero then the other number, rounded and
- // scaled if necessary, is used as the result.
- {
- boolean lhsIsZero = lhs.signum() == 0;
- boolean augendIsZero = augend.signum() == 0;
-
- if (lhsIsZero || augendIsZero) {
- int preferredScale = Math.max(lhs.scale(), augend.scale());
- BigDecimal result;
-
- if (lhsIsZero && augendIsZero)
- return new BigDecimal(BigInteger.ZERO, preferredScale);
-
-
- result = lhsIsZero ? augend.doRound(mc) : lhs.doRound(mc);
-
- if (result.scale() == preferredScale)
- return result;
- else if (result.scale() > preferredScale)
- return result.stripZerosToMatchScale(preferredScale);
- else { // result.scale < preferredScale
- int precisionDiff = mc.precision - result.precision();
- int scaleDiff = preferredScale - result.scale();
-
- if (precisionDiff >= scaleDiff)
- return result.setScale(preferredScale); // can achieve target scale
- else
- return result.setScale(result.scale() + precisionDiff);
- }
- }
- }
-
- int padding = checkScale((long)lhs.scale - augend.scale);
- if (padding != 0) { // scales differ; alignment needed
- // if one operand is < 0.01 ulp of the other at full
- // precision, replace it by a 'sticky bit' of +0.001/-0.001 ulp.
- // [In a sense this is an 'optimization', but it also makes
- // a much wider range of additions practical.]
- if (padding < 0) { // lhs will be padded
- int ulpscale = lhs.scale - lhs.precision + mc.precision;
- if (augend.scale - augend.precision() > ulpscale + 1) {
- augend = BigDecimal.valueOf(augend.signum(), ulpscale + 3);
- }
- } else { // rhs (augend) will be padded
- int ulpscale = augend.scale - augend.precision + mc.precision;
- if (lhs.scale - lhs.precision() > ulpscale + 1)
- lhs = BigDecimal.valueOf(lhs.signum(), ulpscale + 3);
- }
- BigDecimal arg[] = new BigDecimal[2];
- arg[0] = lhs; arg[1] = augend;
- matchScale(arg);
- lhs = arg[0];
- augend = arg[1];
- }
-
- return new BigDecimal(lhs.intVal.add(augend.intVal), lhs.scale).doRound(mc);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this -
- * subtrahend)</tt>, and whose scale is <tt>max(this.scale(),
- * subtrahend.scale())</tt>.
- *
- * @param subtrahend value to be subtracted from this <tt>BigDecimal</tt>.
- * @return <tt>this - subtrahend</tt>
- */
- public BigDecimal subtract(BigDecimal subtrahend) {
- BigDecimal arg[] = new BigDecimal[2];
- arg[0] = this; arg[1] = subtrahend;
- matchScale(arg);
- return new BigDecimal(arg[0].intVal.subtract(arg[1].intVal),
- arg[0].scale);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this - subtrahend)</tt>,
- * with rounding according to the context settings.
- *
- * If <tt>subtrahend</tt> is zero then this, rounded if necessary, is used as the
- * result. If this is zero then the result is <tt>subtrahend.negate(mc)</tt>.
- *
- * @param subtrahend value to be subtracted from this <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @return <tt>this - subtrahend</tt>, rounded as necessary.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
- if (mc.precision == 0)
- return subtract(subtrahend);
- // share the special rounding code in add()
- BigDecimal rhs = new BigDecimal(subtrahend.intVal.negate(), subtrahend.scale);
- rhs.precision = subtrahend.precision;
- return add(rhs, mc);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this ×
- * multiplicand)</tt>, and whose scale is <tt>(this.scale() +
- * multiplicand.scale())</tt>.
- *
- * @param multiplicand value to be multiplied by this <tt>BigDecimal</tt>.
- * @return <tt>this * multiplicand</tt>
- */
- public BigDecimal multiply(BigDecimal multiplicand) {
- BigDecimal result = new BigDecimal(intVal.multiply(multiplicand.intVal), 0);
- result.scale = checkScale((long)scale+multiplicand.scale);
- return result;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this ×
- * multiplicand)</tt>, with rounding according to the context settings.
- *
- * @param multiplicand value to be multiplied by this <tt>BigDecimal</tt>.
- * @param mc the context to use.
- * @return <tt>this * multiplicand</tt>, rounded as necessary.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
- if (mc.precision == 0)
- return multiply(multiplicand);
- BigDecimal lhs = this;
- return lhs.multiply(multiplicand).doRound(mc);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
- * divisor)</tt>, and whose scale is as specified. If rounding must
- * be performed to generate a result with the specified scale, the
- * specified rounding mode is applied.
- *
- * <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
- * should be used in preference to this legacy method.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param scale scale of the <tt>BigDecimal</tt> quotient to be returned.
- * @param roundingMode rounding mode to apply.
- * @return <tt>this / divisor</tt>
- * @throws ArithmeticException if <tt>divisor</tt> is zero,
- * <tt>roundingMode==ROUND_UNNECESSARY</tt> and
- * the specified scale is insufficient to represent the result
- * of the division exactly.
- * @throws IllegalArgumentException if <tt>roundingMode</tt> does not
- * represent a valid rounding mode.
- * @see #ROUND_UP
- * @see #ROUND_DOWN
- * @see #ROUND_CEILING
- * @see #ROUND_FLOOR
- * @see #ROUND_HALF_UP
- * @see #ROUND_HALF_DOWN
- * @see #ROUND_HALF_EVEN
- * @see #ROUND_UNNECESSARY
- */
- public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
- if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
- throw new IllegalArgumentException("Invalid rounding mode");
-
- /*
- * Rescale dividend or divisor (whichever can be "upscaled" to
- * produce correctly scaled quotient).
- * Take care to detect out-of-range scales
- */
- BigDecimal dividend;
- if (checkScale((long)scale + divisor.scale) >= this.scale) {
- dividend = this.setScale(scale + divisor.scale);
- } else {
- dividend = this;
- divisor = divisor.setScale(checkScale((long)this.scale - scale));
- }
-
- /* Do the division and return result if it's exact */
- BigInteger i[] = dividend.intVal.divideAndRemainder(divisor.intVal);
- BigInteger q = i[0], r = i[1];
- if (r.signum() == 0)
- return new BigDecimal(q, scale);
- if (roundingMode == ROUND_UNNECESSARY) /* Rounding prohibited */
- throw new ArithmeticException("Rounding necessary");
-
- /* Round as appropriate */
- int signum = dividend.signum() * divisor.signum(); /* Sign of result */
- boolean increment;
- if (roundingMode == ROUND_UP) { /* Away from zero */
- increment = true;
- } else if (roundingMode == ROUND_DOWN) { /* Towards zero */
- increment = false;
- } else if (roundingMode == ROUND_CEILING) { /* Towards +infinity */
- increment = (signum > 0);
- } else if (roundingMode == ROUND_FLOOR) { /* Towards -infinity */
- increment = (signum < 0);
- } else { /* Remaining modes based on nearest-neighbor determination */
- // add(r) here is faster than multiply(2) or shiftLeft(1)
- int cmpFracHalf = r.add(r).abs().compareTo(divisor.intVal.abs());
- if (cmpFracHalf < 0) { /* We're closer to higher digit */
- increment = false;
- } else if (cmpFracHalf > 0) { /* We're closer to lower digit */
- increment = true;
- } else { /* We're dead-center */
- if (roundingMode == ROUND_HALF_UP)
- increment = true;
- else if (roundingMode == ROUND_HALF_DOWN)
- increment = false;
- else /* roundingMode == ROUND_HALF_EVEN */
- increment = q.testBit(0); /* true iff q is odd */
- }
- }
- return (increment
- ? new BigDecimal(q.add(BigInteger.valueOf(signum)), scale)
- : new BigDecimal(q, scale));
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
- * divisor)</tt>, and whose scale is as specified. If rounding must
- * be performed to generate a result with the specified scale, the
- * specified rounding mode is applied.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param scale scale of the <tt>BigDecimal</tt> quotient to be returned.
- * @param roundingMode rounding mode to apply.
- * @return <tt>this / divisor</tt>
- * @throws ArithmeticException if <tt>divisor</tt> is zero,
- * <tt>roundingMode==RoundingMode.UNNECESSARY</tt> and
- * the specified scale is insufficient to represent the result
- * of the division exactly.
- * @since 1.5
- */
- public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
- return divide(divisor, scale, roundingMode.oldMode);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
- * divisor)</tt>, and whose scale is <tt>this.scale()</tt>. If
- * rounding must be performed to generate a result with the given
- * scale, the specified rounding mode is applied.
- *
- * <p>The new {@link #divide(BigDecimal, RoundingMode)} method
- * should be used in preference to this legacy method.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param roundingMode rounding mode to apply.
- * @return <tt>this / divisor</tt>
- * @throws ArithmeticException if <tt>divisor==0</tt>, or
- * <tt>roundingMode==ROUND_UNNECESSARY</tt> and
- * <tt>this.scale()</tt> is insufficient to represent the result
- * of the division exactly.
- * @throws IllegalArgumentException if <tt>roundingMode</tt> does not
- * represent a valid rounding mode.
- * @see #ROUND_UP
- * @see #ROUND_DOWN
- * @see #ROUND_CEILING
- * @see #ROUND_FLOOR
- * @see #ROUND_HALF_UP
- * @see #ROUND_HALF_DOWN
- * @see #ROUND_HALF_EVEN
- * @see #ROUND_UNNECESSARY
- */
- public BigDecimal divide(BigDecimal divisor, int roundingMode) {
- return this.divide(divisor, scale, roundingMode);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
- * divisor)</tt>, and whose scale is <tt>this.scale()</tt>. If
- * rounding must be performed to generate a result with the given
- * scale, the specified rounding mode is applied.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param roundingMode rounding mode to apply.
- * @return <tt>this / divisor</tt>
- * @throws ArithmeticException if <tt>divisor==0</tt>, or
- * <tt>roundingMode==RoundingMode.UNNECESSARY</tt> and
- * <tt>this.scale()</tt> is insufficient to represent the result
- * of the division exactly.
- */
- public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
- return this.divide(divisor, scale, roundingMode.oldMode);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
- * divisor)</tt>, and whose preferred scale is <tt>(this.scale() -
- * divisor.scale())</tt> if the exact quotient cannot be
- * represented (because it has a non-terminating decimal
- * expansion) an <tt>ArithmeticException</tt> is thrown.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @throws ArithmeticException if the exact quotient does not have a
- * terminating decimal expansion
- * @return <tt>this / divisor</tt>
- * @since 1.5
- * @author Joseph D. Darcy
- */
- public BigDecimal divide(BigDecimal divisor) {
- /*
- * Handle zero cases first.
- */
- if (divisor.intVal.signum() == 0) { // x/0
- if (this.intVal.signum() == 0) // 0/0
- throw new ArithmeticException("Division undefined"); // NaN
- throw new ArithmeticException("Division by zero");
- }
-
- // Calculate preferred scale
- int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
- Integer.MAX_VALUE), Integer.MIN_VALUE);
- if (this.intVal.signum() == 0) // 0/y
- return BigDecimal.valueOf(0, preferredScale);
- else {
- /*
- * If the quotient this/divisor has a terminating decimal
- * expansion, the expansion can have no more than
- * (a.precision() + ceil(10*b.precision)/3) digits.
- * Therefore, create a MathContext object with this
- * precision and do a divide with the UNNECESSARY rounding
- * mode.
- */
- MathContext mc = new MathContext( (int)Math.min(this.precision() +
- (long)Math.ceil(10.0*divisor.precision()/3.0),
- Integer.MAX_VALUE),
- RoundingMode.UNNECESSARY);
- BigDecimal quotient;
- try {
- quotient = this.divide(divisor, mc);
- } catch (ArithmeticException e) {
- throw new ArithmeticException("Non-terminating decimal expansion; " +
- "no exact representable decimal result.");
- }
-
- int quotientScale = quotient.scale();
-
- // divide(BigDecimal, mc) tries to adjust the quotient to
- // the desired one by removing trailing zeros; since the
- // exact divide method does not have an explicit digit
- // limit, we can add zeros too.
-
- if (preferredScale > quotientScale)
- return quotient.setScale(preferredScale);
-
- return quotient;
- }
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this /
- * divisor)</tt>, with rounding according to the context settings.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param mc the context to use.
- * @return <tt>this / divisor</tt>, rounded as necessary.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt> or
- * <tt>mc.precision == 0</tt> and the quotient has a
- * non-terminating decimal expansion.
- * @since 1.5
- */
- public BigDecimal divide(BigDecimal divisor, MathContext mc) {
- if (mc.precision == 0)
- return divide(divisor);
- BigDecimal lhs = this; // left-hand-side
- BigDecimal rhs = divisor; // right-hand-side
- BigDecimal result; // work
-
- long preferredScale = (long)lhs.scale() - rhs.scale();
-
- // Now calculate the answer. We use the existing
- // divide-and-round method, but as this rounds to scale we have
- // to normalize the values here to achieve the desired result.
- // For x/y we first handle y=0 and x=0, and then normalize x and
- // y to give x' and y' with the following constraints:
- // (a) 0.1 <= x' < 1
- // (b) x' <= y' < 10*x'
- // Dividing x'/y' with the required scale set to mc.precision then
- // will give a result in the range 0.1 to 1 rounded to exactly
- // the right number of digits (except in the case of a result of
- // 1.000... which can arise when x=y, or when rounding overflows
- // The 1.000... case will reduce properly to 1.
- if (rhs.intVal.signum() == 0) { // x/0
- if (lhs.intVal.signum() == 0) // 0/0
- throw new ArithmeticException("Division undefined"); // NaN
- throw new ArithmeticException("Division by zero");
- }
- if (lhs.intVal.signum() == 0) // 0/y
- return new BigDecimal(BigInteger.ZERO,
- (int)Math.max(Math.min(preferredScale,
- Integer.MAX_VALUE),
- Integer.MIN_VALUE));
-
- BigDecimal xprime = new BigDecimal(lhs.intVal.abs(), lhs.precision());
- BigDecimal yprime = new BigDecimal(rhs.intVal.abs(), rhs.precision());
- // xprime and yprime are now both in range 0.1 through 0.999...
- if (mc.roundingMode == RoundingMode.CEILING ||
- mc.roundingMode == RoundingMode.FLOOR) {
- // The floor (round toward negative infinity) and ceil
- // (round toward positive infinity) rounding modes are not
- // invariant under a sign flip. If xprime/yprime has a
- // different sign than lhs/rhs, the rounding mode must be
- // changed.
- if ((xprime.signum() != lhs.signum()) ^
- (yprime.signum() != rhs.signum())) {
- mc = new MathContext(mc.precision,
- (mc.roundingMode==RoundingMode.CEILING)?
- RoundingMode.FLOOR:RoundingMode.CEILING);
- }
- }
-
- if (xprime.compareTo(yprime) > 0) // satisfy constraint (b)
- yprime.scale -= 1; // [that is, yprime *= 10]
- result = xprime.divide(yprime, mc.precision, mc.roundingMode.oldMode);
- // correct the scale of the result...
- result.scale = checkScale((long)yprime.scale - xprime.scale
- - (rhs.scale - lhs.scale) + mc.precision);
- // apply the sign
- if (lhs.intVal.signum() != rhs.intVal.signum())
- result = result.negate();
- // doRound, here, only affects 1000000000 case.
- result = result.doRound(mc);
-
- if (result.multiply(divisor).compareTo(this) == 0) {
- // Apply preferred scale rules for exact quotients
- return result.stripZerosToMatchScale(preferredScale);
- }
- else {
- return result;
- }
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is the integer part
- * of the quotient <tt>(this / divisor)</tt> rounded down. The
- * preferred scale of the result is <code>(this.scale() -
- * divisor.scale())</code>.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @return The integer part of <tt>this / divisor</tt>.
- * @throws ArithmeticException if <tt>divisor==0</tt>
- * @since 1.5
- */
- public BigDecimal divideToIntegralValue(BigDecimal divisor) {
- // Calculate preferred scale
- int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
- Integer.MAX_VALUE), Integer.MIN_VALUE);
-
- if (this.abs().compareTo(divisor.abs()) < 0) {
- // much faster when this << divisor
- return BigDecimal.valueOf(0, preferredScale);
- }
-
- if(this.signum() == 0 && divisor.signum() != 0)
- return this.setScale(preferredScale);
-
- // Perform a divide with enough digits to round to a correct
- // integer value; then remove any fractional digits
-
- int maxDigits = (int)Math.min(this.precision() +
- (long)Math.ceil(10.0*divisor.precision()/3.0) +
- Math.abs((long)this.scale() - divisor.scale()) + 2,
- Integer.MAX_VALUE);
-
- BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
- RoundingMode.DOWN));
- if (quotient.scale > 0) {
- quotient = quotient.setScale(0, RoundingMode.DOWN).
- stripZerosToMatchScale(preferredScale);
- }
-
- if (quotient.scale < preferredScale) {
- // pad with zeros if necessary
- quotient = quotient.setScale(preferredScale);
- }
-
- return quotient;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is the integer part
- * of <tt>(this / divisor)</tt>. Since the integer part of the
- * exact quotient does not depend on the rounding mode, the
- * rounding mode does not affect the values returned by this
- * method. The preferred scale of the result is
- * <code>(this.scale() - divisor.scale())</code>. An
- * <tt>ArithmeticException</tt> is thrown if the integer part of
- * the exact quotient needs more than <tt>mc.precision</tt>
- * digits.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param mc the context to use.
- * @return The integer part of <tt>this / divisor</tt>.
- * @throws ArithmeticException if <tt>divisor==0</tt>
- * @throws ArithmeticException if <tt>mc.precision</tt> > 0 and the result
- * requires a precision of more than <tt>mc.precision</tt> digits.
- * @since 1.5
- * @author Joseph D. Darcy
- */
- public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
- if (mc.precision == 0 || // exact result
- (this.abs().compareTo(divisor.abs()) < 0) ) // zero result
- return divideToIntegralValue(divisor);
-
- // Calculate preferred scale
- int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(),
- Integer.MAX_VALUE), Integer.MIN_VALUE);
-
- /*
- * Perform a normal divide to mc.precision digits. If the
- * remainder has absolute value less than the divisor, the
- * integer portion of the quotient fits into mc.precision
- * digits. Next, remove any fractional digits from the
- * quotient and adjust the scale to the preferred value.
- */
- BigDecimal result = this.divide(divisor, new MathContext(mc.precision,
- RoundingMode.DOWN));
- int resultScale = result.scale();
-
- if (result.scale() < 0) {
- /*
- * Result is an integer. See if quotient represents the
- * full integer portion of the exact quotient; if it does,
- * the computed remainder will be less than the divisor.
- */
- BigDecimal product = result.multiply(divisor);
- if (this.subtract(product).abs().compareTo(divisor.abs()) > 0) {
- throw new ArithmeticException("Division impossible");
- }
- } else if (result.scale() > 0) {
- /*
- * Integer portion of quotient will fit into precision
- * digits; recompute quotient to scale 0 to avoid double
- * rounding and then try to adjust, if necessary.
- */
- result = result.setScale(0, RoundingMode.DOWN);
- }
- // else result.scale() == 0;
-
- int precisionDiff;
- if ((preferredScale > result.scale()) &&
- (precisionDiff = mc.precision - result.precision()) > 0 ) {
- return result.setScale(result.scale() +
- Math.min(precisionDiff, preferredScale - result.scale) );
- } else
- return result.stripZerosToMatchScale(preferredScale);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this % divisor)</tt>.
- *
- * <p>The remainder is given by
- * <tt>this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))</tt>.
- * Note that this is not the modulo operation (the result can be
- * negative).
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @return <tt>this % divisor</tt>.
- * @throws ArithmeticException if <tt>divisor==0</tt>
- * @since 1.5
- */
- public BigDecimal remainder(BigDecimal divisor) {
- BigDecimal divrem[] = this.divideAndRemainder(divisor);
- return divrem[1];
- }
-
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(this %
- * divisor)</tt>, with rounding according to the context settings.
- * The <tt>MathContext</tt> settings affect the implicit divide
- * used to compute the remainder. The remainder computation
- * itself is by definition exact. Therefore, the remainder may
- * contain more than <tt>mc.getPrecision()</tt> digits.
- *
- * <p>The remainder is given by
- * <tt>this.subtract(this.divideToIntegralValue(divisor,
- * mc).multiply(divisor))</tt>. Note that this is not the modulo
- * operation (the result can be negative).
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided.
- * @param mc the context to use.
- * @return <tt>this % divisor</tt>, rounded as necessary.
- * @throws ArithmeticException if <tt>divisor==0</tt>
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>, or <tt>mc.precision</tt>
- * > 0 and the result of <tt>this.divideToIntgralValue(divisor)</tt> would
- * require a precision of more than <tt>mc.precision</tt> digits.
- * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
- * @since 1.5
- */
- public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
- BigDecimal divrem[] = this.divideAndRemainder(divisor, mc);
- return divrem[1];
- }
-
- /**
- * Returns a two-element <tt>BigDecimal</tt> array containing the
- * result of <tt>divideToIntegralValue</tt> followed by the result of
- * <tt>remainder</tt> on the two operands.
- *
- * <p>Note that if both the integer quotient and remainder are
- * needed, this method is faster than using the
- * <tt>divideToIntegralValue</tt> and <tt>remainder</tt> methods
- * separately because the division need only be carried out once.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided,
- * and the remainder computed.
- * @return a two element <tt>BigDecimal</tt> array: the quotient
- * (the result of <tt>divideToIntegralValue</tt>) is the initial element
- * and the remainder is the final element.
- * @throws ArithmeticException if <tt>divisor==0</tt>
- * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
- * @see #remainder(java.math.BigDecimal, java.math.MathContext)
- * @since 1.5
- */
- public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
- // we use the identity x = i * y + r to determine r
- BigDecimal[] result = new BigDecimal[2];
-
- result[0] = this.divideToIntegralValue(divisor);
- result[1] = this.subtract(result[0].multiply(divisor));
- return result;
- }
-
- /**
- * Returns a two-element <tt>BigDecimal</tt> array containing the
- * result of <tt>divideToIntegralValue</tt> followed by the result of
- * <tt>remainder</tt> on the two operands calculated with rounding
- * according to the context settings.
- *
- * <p>Note that if both the integer quotient and remainder are
- * needed, this method is faster than using the
- * <tt>divideToIntegralValue</tt> and <tt>remainder</tt> methods
- * separately because the division need only be carried out once.
- *
- * @param divisor value by which this <tt>BigDecimal</tt> is to be divided,
- * and the remainder computed.
- * @param mc the context to use.
- * @return a two element <tt>BigDecimal</tt> array: the quotient
- * (the result of <tt>divideToIntegralValue</tt>) is the
- * initial element and the remainder is the final element.
- * @throws ArithmeticException if <tt>divisor==0</tt>
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>, or <tt>mc.precision</tt>
- * > 0 and the result of <tt>this.divideToIntgralValue(divisor)</tt> would
- * require a precision of more than <tt>mc.precision</tt> digits.
- * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
- * @see #remainder(java.math.BigDecimal, java.math.MathContext)
- * @since 1.5
- */
- public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
- if (mc.precision == 0)
- return divideAndRemainder(divisor);
-
- BigDecimal[] result = new BigDecimal[2];
- BigDecimal lhs = this;
-
- result[0] = lhs.divideToIntegralValue(divisor, mc);
- result[1] = lhs.subtract(result[0].multiply(divisor));
- return result;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is
- * <tt>(this<sup>n</sup>)</tt>, The power is computed exactly, to
- * unlimited precision.
- *
- * <p>The parameter <tt>n</tt> must be in the range 0 through
- * 999999999, inclusive. <tt>ZERO.pow(0)</tt> returns {@link
- * #ONE}.
- *
- * Note that future releases may expand the allowable exponent
- * range of this method.
- *
- * @param n power to raise this <tt>BigDecimal</tt> to.
- * @return <tt>this<sup>n</sup></tt>
- * @throws ArithmeticException if <tt>n</tt> is out of range.
- * @since 1.5
- */
- public BigDecimal pow(int n) {
- if (n < 0 || n > 999999999)
- throw new ArithmeticException("Invalid operation");
- // No need to calculate pow(n) if result will over/underflow.
- // Don't attempt to support "supernormal" numbers.
- int newScale = checkScale((long)scale * n);
- return new BigDecimal(intVal.pow(n), newScale);
- }
-
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is
- * <tt>(this<sup>n</sup>)</tt>. The current implementation uses
- * the core algorithm defined in ANSI standard X3.274-1996 with
- * rounding according to the context settings. In general, the
- * returned numerical value is within two ulps of the exact
- * numerical value for the chosen precision. Note that future
- * releases may use a different algorithm with a decreased
- * allowable error bound and increased allowable exponent range.
- *
- * <p>The X3.274-1996 algorithm is:
- *
- * <ul>
- * <li> An <tt>ArithmeticException</tt> exception is thrown if
- * <ul>
- * <li><tt>abs(n) > 999999999</tt>
- * <li><tt>mc.precision == 0</tt> and <tt>n < 0</tt>
- * <li><tt>mc.precision > 0</tt> and <tt>n</tt> has more than
- * <tt>mc.precision</tt> decimal digits
- * </ul>
- *
- * <li> if <tt>n</tt> is zero, {@link #ONE} is returned even if
- * <tt>this</tt> is zero, otherwise
- * <ul>
- * <li> if <tt>n</tt> is positive, the result is calculated via
- * the repeated squaring technique into a single accumulator.
- * The individual multiplications with the accumulator use the
- * same math context settings as in <tt>mc</tt> except for a
- * precision increased to <tt>mc.precision + elength + 1</tt>
- * where <tt>elength</tt> is the number of decimal digits in
- * <tt>n</tt>.
- *
- * <li> if <tt>n</tt> is negative, the result is calculated as if
- * <tt>n</tt> were positive; this value is then divided into one
- * using the working precision specified above.
- *
- * <li> The final value from either the positive or negative case
- * is then rounded to the destination precision.
- * </ul>
- * </ul>
- *
- * @param n power to raise this <tt>BigDecimal</tt> to.
- * @param mc the context to use.
- * @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
- * algorithm
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>, or <tt>n</tt> is out
- * of range.
- * @since 1.5
- */
- public BigDecimal pow(int n, MathContext mc) {
- if (mc.precision == 0)
- return pow(n);
- if (n < -999999999 || n > 999999999)
- throw new ArithmeticException("Invalid operation");
- if (n == 0)
- return ONE; // x**0 == 1 in X3.274
- BigDecimal lhs = this;
- MathContext workmc = mc; // working settings
- int mag = Math.abs(n); // magnitude of n
- if (mc.precision > 0) {
-
- int elength = intLength(mag); // length of n in digits
- if (elength > mc.precision) // X3.274 rule
- throw new ArithmeticException("Invalid operation");
- workmc = new MathContext(mc.precision + elength + 1,
- mc.roundingMode);
- }
- // ready to carry out power calculation...
- BigDecimal acc = ONE; // accumulator
- boolean seenbit = false; // set once we've seen a 1-bit
- for (int i=1;;i++) { // for each bit [top bit ignored]
- mag += mag; // shift left 1 bit
- if (mag < 0) { // top bit is set
- seenbit = true; // OK, we're off
- acc = acc.multiply(lhs, workmc); // acc=acc*x
- }
- if (i == 31)
- break; // that was the last bit
- if (seenbit)
- acc=acc.multiply(acc, workmc); // acc=acc*acc [square]
- // else (!seenbit) no point in squaring ONE
- }
- // if negative n, calculate the reciprocal using working precision
- if (n<0) // [hence mc.precision>0]
- acc=ONE.divide(acc, workmc);
- // round to final precision and strip zeros
- return acc.doRound(mc);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is the absolute value
- * of this <tt>BigDecimal</tt>, and whose scale is
- * <tt>this.scale()</tt>.
- *
- * @return <tt>abs(this)</tt>
- */
- public BigDecimal abs() {
- return (signum() < 0 ? negate() : this);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is the absolute value
- * of this <tt>BigDecimal</tt>, with rounding according to the
- * context settings.
- *
- * @param mc the context to use.
- * @return <tt>abs(this)</tt>, rounded as necessary.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- */
- public BigDecimal abs(MathContext mc) {
- return (signum() < 0 ? negate(mc) : plus(mc));
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(-this)</tt>,
- * and whose scale is <tt>this.scale()</tt>.
- *
- * @return <tt>-this</tt>.
- */
- public BigDecimal negate() {
- BigDecimal result = new BigDecimal(intVal.negate(), scale);
- result.precision = precision;
- return result;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(-this)</tt>,
- * with rounding according to the context settings.
- *
- * @param mc the context to use.
- * @return <tt>-this</tt>, rounded as necessary.
- * @throws ArithmeticException if or the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @since 1.5
- */
- public BigDecimal negate(MathContext mc) {
- return plus(mc).negate();
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(+this)</tt>, and whose
- * scale is <tt>this.scale()</tt>.
- *
- * <p>This method, which simply returns this <tt>BigDecimal</tt>
- * is included for symmetry with the unary minus method {@link
- * #negate()}.
- *
- * @return <tt>this</tt>.
- * @see #negate()
- * @since 1.5
- */
- public BigDecimal plus() {
- return this;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose value is <tt>(+this)</tt>,
- * with rounding according to the context settings.
- *
- * <p>The effect of this method is identical to that of the {@link
- * #round(MathContext)} method.
- *
- * @param mc the context to use.
- * @return <tt>this</tt>, rounded as necessary. A zero result will
- * have a scale of 0.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- * @see #round(MathContext)
- * @since 1.5
- */
- public BigDecimal plus(MathContext mc) {
- if (mc.precision == 0) // no rounding please
- return this;
- BigDecimal rhs = this;
- return rhs.doRound(mc);
- }
-
- /**
- * Returns the signum function of this <tt>BigDecimal</tt>.
- *
- * @return -1, 0, or 1 as the value of this <tt>BigDecimal</tt>
- * is negative, zero, or positive.
- */
- public int signum() {
- return intVal.signum();
- }
-
-
- /**
- * Returns the <i>scale</i> of this <tt>BigDecimal</tt>. If zero
- * or positive, the scale is the number of digits to the right of
- * the decimal point. If negative, the unscaled value of the
- * number is multiplied by ten to the power of the negation of the
- * scale. For example, a scale of <tt>-3</tt> means the unscaled
- * value is multiplied by 1000.
- *
- * @return the scale of this <tt>BigDecimal</tt>.
- */
- public int scale() {
- return scale;
- }
-
- /**
- * Returns the <i>precision</i> of this <tt>BigDecimal</tt>. (The
- * precision is the number of digits in the unscaled value.)
- *
- * <p>The precision of a zero value is 1.
- *
- * @return the precision of this <tt>BigDecimal</tt>.
- * @since 1.5
- */
- public int precision() {
- int result = precision;
- if (result == 0) {
- result = digitLength();
- precision = result;
- }
- return result;
- }
-
-
- /**
- * Returns a <tt>BigInteger</tt> whose value is the <i>unscaled
- * value</i> of this <tt>BigDecimal</tt>. (Computes <tt>(this *
- * 10<sup>this.scale()</sup>)</tt>.)
- *
- * @return the unscaled value of this <tt>BigDecimal</tt>.
- * @since 1.2
- */
- public BigInteger unscaledValue() {
- return intVal;
- }
-
- // Rounding Modes
-
- /**
- * Rounding mode to round away from zero. Always increments the
- * digit prior to a nonzero discarded fraction. Note that this rounding
- * mode never decreases the magnitude of the calculated value.
- */
- public final static int ROUND_UP = 0;
-
- /**
- * Rounding mode to round towards zero. Never increments the digit
- * prior to a discarded fraction (i.e., truncates). Note that this
- * rounding mode never increases the magnitude of the calculated value.
- */
- public final static int ROUND_DOWN = 1;
-
- /**
- * Rounding mode to round towards positive infinity. If the
- * <tt>BigDecimal</tt> is positive, behaves as for
- * <tt>ROUND_UP</tt> if negative, behaves as for
- * <tt>ROUND_DOWN</tt>. Note that this rounding mode never
- * decreases the calculated value.
- */
- public final static int ROUND_CEILING = 2;
-
- /**
- * Rounding mode to round towards negative infinity. If the
- * <tt>BigDecimal</tt> is positive, behave as for
- * <tt>ROUND_DOWN</tt> if negative, behave as for
- * <tt>ROUND_UP</tt>. Note that this rounding mode never
- * increases the calculated value.
- */
- public final static int ROUND_FLOOR = 3;
-
- /**
- * Rounding mode to round towards "nearest neighbor"
- * unless both neighbors are equidistant, in which case round up.
- * Behaves as for <tt>ROUND_UP</tt> if the discarded fraction is
- * >= 0.5; otherwise, behaves as for <tt>ROUND_DOWN</tt>. Note
- * that this is the rounding mode that most of us were taught in
- * grade school.
- */
- public final static int ROUND_HALF_UP = 4;
-
- /**
- * Rounding mode to round towards "nearest neighbor"
- * unless both neighbors are equidistant, in which case round
- * down. Behaves as for <tt>ROUND_UP</tt> if the discarded
- * fraction is > 0.5; otherwise, behaves as for
- * <tt>ROUND_DOWN</tt>.
- */
- public final static int ROUND_HALF_DOWN = 5;
-
- /**
- * Rounding mode to round towards the "nearest neighbor"
- * unless both neighbors are equidistant, in which case, round
- * towards the even neighbor. Behaves as for
- * <tt>ROUND_HALF_UP</tt> if the digit to the left of the
- * discarded fraction is odd; behaves as for
- * <tt>ROUND_HALF_DOWN</tt> if it's even. Note that this is the
- * rounding mode that minimizes cumulative error when applied
- * repeatedly over a sequence of calculations.
- */
- public final static int ROUND_HALF_EVEN = 6;
-
- /**
- * Rounding mode to assert that the requested operation has an exact
- * result, hence no rounding is necessary. If this rounding mode is
- * specified on an operation that yields an inexact result, an
- * <tt>ArithmeticException</tt> is thrown.
- */
- public final static int ROUND_UNNECESSARY = 7;
-
-
- // Scaling/Rounding Operations
-
- /**
- * Returns a <tt>BigDecimal</tt> rounded according to the
- * <tt>MathContext</tt> settings. If the precision setting is 0 then
- * no rounding takes place.
- *
- * <p>The effect of this method is identical to that of the
- * {@link #plus(MathContext)} method.
- *
- * @param mc the context to use.
- * @return a <tt>BigDecimal</tt> rounded according to the
- * <tt>MathContext</tt> settings.
- * @throws ArithmeticException if the rounding mode is
- * <tt>UNNECESSARY</tt> and the
- * <tt>BigDecimal</tt> operation would require rounding.
- * @see #plus(MathContext)
- * @since 1.5
- */
- public BigDecimal round(MathContext mc) {
- return plus(mc);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose scale is the specified
- * value, and whose unscaled value is determined by multiplying or
- * dividing this <tt>BigDecimal</tt>'s unscaled value by the
- * appropriate power of ten to maintain its overall value. If the
- * scale is reduced by the operation, the unscaled value must be
- * divided (rather than multiplied), and the value may be changed;
- * in this case, the specified rounding mode is applied to the
- * division.
- *
- * @param newScale scale of the <tt>BigDecimal</tt> value to be returned.
- * @param roundingMode The rounding mode to apply.
- * @return a <tt>BigDecimal</tt> whose scale is the specified value,
- * and whose unscaled value is determined by multiplying or
- * dividing this <tt>BigDecimal</tt>'s unscaled value by the
- * appropriate power of ten to maintain its overall value.
- * @throws ArithmeticException if <tt>roundingMode==UNNECESSARY</tt>
- * and the specified scaling operation would require
- * rounding.
- * @see RoundingMode
- * @since 1.5
- */
- public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
- return setScale(newScale, roundingMode.oldMode);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose scale is the specified
- * value, and whose unscaled value is determined by multiplying or
- * dividing this <tt>BigDecimal</tt>'s unscaled value by the
- * appropriate power of ten to maintain its overall value. If the
- * scale is reduced by the operation, the unscaled value must be
- * divided (rather than multiplied), and the value may be changed;
- * in this case, the specified rounding mode is applied to the
- * division.
- *
- * <p>Note that since BigDecimal objects are immutable, calls of
- * this method do <i>not</i> result in the original object being
- * modified, contrary to the usual convention of having methods
- * named <tt>set<i>X</i></tt> mutate field <tt><i>X</i></tt>.
- * Instead, <tt>setScale</tt> returns an object with the proper
- * scale; the returned object may or may not be newly allocated.
- *
- * <p>The new {@link #setScale(int, RoundingMode)} method should
- * be used in preference to this legacy method.
- *
- * @param newScale scale of the <tt>BigDecimal</tt> value to be returned.
- * @param roundingMode The rounding mode to apply.
- * @return a <tt>BigDecimal</tt> whose scale is the specified value,
- * and whose unscaled value is determined by multiplying or
- * dividing this <tt>BigDecimal</tt>'s unscaled value by the
- * appropriate power of ten to maintain its overall value.
- * @throws ArithmeticException if <tt>roundingMode==ROUND_UNNECESSARY</tt>
- * and the specified scaling operation would require
- * rounding.
- * @throws IllegalArgumentException if <tt>roundingMode</tt> does not
- * represent a valid rounding mode.
- * @see #ROUND_UP
- * @see #ROUND_DOWN
- * @see #ROUND_CEILING
- * @see #ROUND_FLOOR
- * @see #ROUND_HALF_UP
- * @see #ROUND_HALF_DOWN
- * @see #ROUND_HALF_EVEN
- * @see #ROUND_UNNECESSARY
- */
- public BigDecimal setScale(int newScale, int roundingMode) {
- if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
- throw new IllegalArgumentException("Invalid rounding mode");
-
- if (newScale == this.scale) // easy case
- return this;
- if (this.signum() == 0) // zero can have any scale
- return new BigDecimal(BigInteger.ZERO, newScale);
- if (newScale > this.scale) {
- // [we can use checkScale to assure multiplier is valid]
- int raise = checkScale((long)newScale - this.scale);
- BigDecimal result = new BigDecimal(
- intVal.multiply(tenToThe(raise)), newScale);
- if (this.precision > 0)
- result.precision = this.precision + newScale - this.scale;
- return result;
- }
- /* scale < this.scale */
- // we cannot perfectly predict the precision after rounding
- return divide(ONE, newScale, roundingMode);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> whose scale is the specified
- * value, and whose value is numerically equal to this
- * <tt>BigDecimal</tt>'s. Throws an <tt>ArithmeticException</tt>
- * if this is not possible.
- *
- * <p>This call is typically used to increase the scale, in which
- * case it is guaranteed that there exists a <tt>BigDecimal</tt>
- * of the specified scale and the correct value. The call can
- * also be used to reduce the scale if the caller knows that the
- * <tt>BigDecimal</tt> has sufficiently many zeros at the end of
- * its fractional part (i.e., factors of ten in its integer value)
- * to allow for the rescaling without changing its value.
- *
- * <p>This method returns the same result as the two-argument
- * versions of <tt>setScale</tt>, but saves the caller the trouble
- * of specifying a rounding mode in cases where it is irrelevant.
- *
- * <p>Note that since <tt>BigDecimal</tt> objects are immutable,
- * calls of this method do <i>not</i> result in the original
- * object being modified, contrary to the usual convention of
- * having methods named <tt>set<i>X</i></tt> mutate field
- * <tt><i>X</i></tt>. Instead, <tt>setScale</tt> returns an
- * object with the proper scale; the returned object may or may
- * not be newly allocated.
- *
- * @param newScale scale of the <tt>BigDecimal</tt> value to be returned.
- * @return a <tt>BigDecimal</tt> whose scale is the specified value, and
- * whose unscaled value is determined by multiplying or dividing
- * this <tt>BigDecimal</tt>'s unscaled value by the appropriate
- * power of ten to maintain its overall value.
- * @throws ArithmeticException if the specified scaling operation would
- * require rounding.
- * @see #setScale(int, int)
- * @see #setScale(int, RoundingMode)
- */
- public BigDecimal setScale(int newScale) {
- return setScale(newScale, ROUND_UNNECESSARY);
- }
-
- // Decimal Point Motion Operations
-
- /**
- * Returns a <tt>BigDecimal</tt> which is equivalent to this one
- * with the decimal point moved <tt>n</tt> places to the left. If
- * <tt>n</tt> is non-negative, the call merely adds <tt>n</tt> to
- * the scale. If <tt>n</tt> is negative, the call is equivalent
- * to <tt>movePointRight(-n)</tt>. The <tt>BigDecimal</tt>
- * returned by this call has value <tt>(this ×
- * 10<sup>-n</sup>)</tt> and scale <tt>max(this.scale()+n,
- * 0)</tt>.
- *
- * @param n number of places to move the decimal point to the left.
- * @return a <tt>BigDecimal</tt> which is equivalent to this one with the
- * decimal point moved <tt>n</tt> places to the left.
- * @throws ArithmeticException if scale overflows.
- */
- public BigDecimal movePointLeft(int n) {
- // Cannot use movePointRight(-n) in case of n==Integer.MIN_VALUE
- BigDecimal num = new BigDecimal(intVal, checkScale((long)scale + n));
- return (num.scale<0 ? num.setScale(0) : num);
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> which is equivalent to this one
- * with the decimal point moved <tt>n</tt> places to the right.
- * If <tt>n</tt> is non-negative, the call merely subtracts
- * <tt>n</tt> from the scale. If <tt>n</tt> is negative, the call
- * is equivalent to <tt>movePointLeft(-n)</tt>. The
- * <tt>BigDecimal</tt> returned by this call has value <tt>(this
- * × 10<sup>n</sup>)</tt> and scale <tt>max(this.scale()-n,
- * 0)</tt>.
- *
- * @param n number of places to move the decimal point to the right.
- * @return a <tt>BigDecimal</tt> which is equivalent to this one
- * with the decimal point moved <tt>n</tt> places to the right.
- * @throws ArithmeticException if scale overflows.
- */
- public BigDecimal movePointRight(int n) {
- // Cannot use movePointLeft(-n) in case of n==Integer.MIN_VALUE
- BigDecimal num = new BigDecimal(intVal, checkScale((long)scale - n));
- return (num.scale<0 ? num.setScale(0) : num);
- }
-
- /**
- * Returns a BigDecimal whose numerical value is equal to
- * (<tt>this</tt> * 10<sup>n</sup>). The scale of
- * the result is <tt>(this.scale() - n)</tt>.
- *
- * @throws ArithmeticException if the scale would be
- * outside the range of a 32-bit integer.
- *
- * @since 1.5
- */
- public BigDecimal scaleByPowerOfTen(int n) {
- BigDecimal num = new BigDecimal(intVal, checkScale((long)scale - n));
- num.precision = precision;
- return num;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> which is numerically equal to
- * this one but with any trailing zeros removed from the
- * representation. For example, stripping the trailing zeros from
- * the <tt>BigDecimal</tt> value <tt>600.0</tt>, which has
- * [<tt>BigInteger</tt>, <tt>scale</tt>] components equals to
- * [6000, 1], yields <tt>6E2</tt> with [<tt>BigInteger</tt>,
- * <tt>scale</tt>] components equals to [6, -2]
- *
- * @return a numerically equal <tt>BigDecimal</tt> with any
- * trailing zeros removed.
- */
- public BigDecimal stripTrailingZeros() {
- return (new BigDecimal(intVal, scale)).stripZerosToMatchScale(Long.MIN_VALUE);
- }
-
- // Comparison Operations
-
- /**
- * Compares this <tt>BigDecimal</tt> with the specified
- * <tt>BigDecimal</tt>. Two <tt>BigDecimal</tt> objects that are
- * equal in value but have a different scale (like 2.0 and 2.00)
- * are considered equal by this method. This method is provided
- * in preference to individual methods for each of the six boolean
- * comparison operators (<, ==, >, >=, !=, <=). The
- * suggested idiom for performing these comparisons is:
- * <tt>(x.compareTo(y)</tt> <<i>op</i>> <tt>0)</tt>, where
- * <<i>op</i>> is one of the six comparison operators.
- *
- * @param val <tt>BigDecimal</tt> to which this <tt>BigDecimal</tt> is
- * to be compared.
- * @return -1, 0, or 1 as this <tt>BigDecimal</tt> is numerically
- * less than, equal to, or greater than <tt>val</tt>.
- */
- public int compareTo(BigDecimal val) {
- /* Optimization: would run fine without the next three lines */
- int sigDiff = signum() - val.signum();
- if (sigDiff != 0)
- return (sigDiff > 0 ? 1 : -1);
-
- // If the (adjusted) exponents are different we do not need to
- // expensively match scales and compare the significands
- int aethis = this.precision() - this.scale; // [-1]
- int aeval = val.precision() - val.scale; // [-1]
- if (aethis < aeval)
- return -this.signum();
- else if (aethis > aeval)
- return this.signum();
-
- // Scale and compare intVals
- BigDecimal arg[] = new BigDecimal[2];
- arg[0] = this; arg[1] = val;
- matchScale(arg);
- return arg[0].intVal.compareTo(arg[1].intVal);
- }
-
- /**
- * Compares this <tt>BigDecimal</tt> with the specified
- * <tt>Object</tt> for equality. Unlike {@link
- * #compareTo(BigDecimal) compareTo}, this method considers two
- * <tt>BigDecimal</tt> objects equal only if they are equal in
- * value and scale (thus 2.0 is not equal to 2.00 when compared by
- * this method).
- *
- * @param x <tt>Object</tt> to which this <tt>BigDecimal</tt> is
- * to be compared.
- * @return <tt>true</tt> if and only if the specified <tt>Object</tt> is a
- * <tt>BigDecimal</tt> whose value and scale are equal to this
- * <tt>BigDecimal</tt>'s.
- * @see #compareTo(java.math.BigDecimal)
- * @see #hashCode
- */
- public boolean equals(Object x) {
- if (!(x instanceof BigDecimal))
- return false;
- BigDecimal xDec = (BigDecimal) x;
-
- return scale == xDec.scale && intVal.equals(xDec.intVal);
- }
-
- /**
- * Returns the minimum of this <tt>BigDecimal</tt> and
- * <tt>val</tt>.
- *
- * @param val value with which the minimum is to be computed.
- * @return the <tt>BigDecimal</tt> whose value is the lesser of this
- * <tt>BigDecimal</tt> and <tt>val</tt>. If they are equal,
- * as defined by the {@link #compareTo(BigDecimal) compareTo}
- * method, <tt>this</tt> is returned.
- * @see #compareTo(java.math.BigDecimal)
- */
- public BigDecimal min(BigDecimal val) {
- return (compareTo(val) <= 0 ? this : val);
- }
-
- /**
- * Returns the maximum of this <tt>BigDecimal</tt> and <tt>val</tt>.
- *
- * @param val value with which the maximum is to be computed.
- * @return the <tt>BigDecimal</tt> whose value is the greater of this
- * <tt>BigDecimal</tt> and <tt>val</tt>. If they are equal,
- * as defined by the {@link #compareTo(BigDecimal) compareTo}
- * method, <tt>this</tt> is returned.
- * @see #compareTo(java.math.BigDecimal)
- */
- public BigDecimal max(BigDecimal val) {
- return (compareTo(val) >= 0 ? this : val);
- }
-
- // Hash Function
-
- /**
- * Returns the hash code for this <tt>BigDecimal</tt>. Note that
- * two <tt>BigDecimal</tt> objects that are numerically equal but
- * differ in scale (like 2.0 and 2.00) will generally <i>not</i>
- * have the same hash code.
- *
- * @return hash code for this <tt>BigDecimal</tt>.
- * @see #equals(Object)
- */
- public int hashCode() {
- return 31*intVal.hashCode() + scale;
- }
-
- // Format Converters
-
- /**
- * Returns the string representation of this <tt>BigDecimal</tt>,
- * using scientific notation if an exponent is needed.
- *
- * <p>A standard canonical string form of the <tt>BigDecimal</tt>
- * is created as though by the following steps: first, the
- * absolute value of the unscaled value of the <tt>BigDecimal</tt>
- * is converted to a string in base ten using the characters
- * <tt>'0'</tt> through <tt>'9'</tt> with no leading zeros (except
- * if its value is zero, in which case a single <tt>'0'</tt>
- * character is used).
- *
- * <p>Next, an <i>adjusted exponent</i> is calculated; this is the
- * negated scale, plus the number of characters in the converted
- * unscaled value, less one. That is,
- * <tt>-scale+(ulength-1)</tt>, where <tt>ulength</tt> is the
- * length of the absolute value of the unscaled value in decimal
- * digits (its <i>precision</i>).
- *
- * <p>If the scale is greater than or equal to zero and the
- * adjusted exponent is greater than or equal to <tt>-6</tt>, the
- * number will be converted to a character form without using
- * exponential notation. In this case, if the scale is zero then
- * no decimal point is added and if the scale is positive a
- * decimal point will be inserted with the scale specifying the
- * number of characters to the right of the decimal point.
- * <tt>'0'</tt> characters are added to the left of the converted
- * unscaled value as necessary. If no character precedes the
- * decimal point after this insertion then a conventional
- * <tt>'0'</tt> character is prefixed.
- *
- * <p>Otherwise (that is, if the scale is negative, or the
- * adjusted exponent is less than <tt>-6</tt>), the number will be
- * converted to a character form using exponential notation. In
- * this case, if the converted <tt>BigInteger</tt> has more than
- * one digit a decimal point is inserted after the first digit.
- * An exponent in character form is then suffixed to the converted
- * unscaled value (perhaps with inserted decimal point); this
- * comprises the letter <tt>'E'</tt> followed immediately by the
- * adjusted exponent converted to a character form. The latter is
- * in base ten, using the characters <tt>'0'</tt> through
- * <tt>'9'</tt> with no leading zeros, and is always prefixed by a
- * sign character <tt>'-'</tt> (<tt>'\u002D'</tt>) if the
- * adjusted exponent is negative, <tt>'+'</tt>
- * (<tt>'\u002B'</tt>) otherwise).
- *
- * <p>Finally, the entire string is prefixed by a minus sign
- * character <tt>'-'</tt> (<tt>'\u002D'</tt>) if the unscaled
- * value is less than zero. No sign character is prefixed if the
- * unscaled value is zero or positive.
- *
- * <p><b>Examples:</b>
- * <p>For each representation [<i>unscaled value</i>, <i>scale</i>]
- * on the left, the resulting string is shown on the right.
- * <pre>
- * [123,0] "123"
- * [-123,0] "-123"
- * [123,-1] "1.23E+3"
- * [123,-3] "1.23E+5"
- * [123,1] "12.3"
- * [123,5] "0.00123"
- * [123,10] "1.23E-8"
- * [-123,12] "-1.23E-10"
- * </pre>
- *
- * <b>Notes:</b>
- * <ol>
- *
- * <li>There is a one-to-one mapping between the distinguishable
- * <tt>BigDecimal</tt> values and the result of this conversion.
- * That is, every distinguishable <tt>BigDecimal</tt> value
- * (unscaled value and scale) has a unique string representation
- * as a result of using <tt>toString</tt>. If that string
- * representation is converted back to a <tt>BigDecimal</tt> using
- * the {@link #BigDecimal(String)} constructor, then the original
- * value will be recovered.
- *
- * <li>The string produced for a given number is always the same;
- * it is not affected by locale. This means that it can be used
- * as a canonical string representation for exchanging decimal
- * data, or as a key for a Hashtable, etc. Locale-sensitive
- * number formatting and parsing is handled by the {@link
- * java.text.NumberFormat} class and its subclasses.
- *
- * <li>The {@link #toEngineeringString} method may be used for
- * presenting numbers with exponents in engineering notation, and the
- * {@link #setScale(int,RoundingMode) setScale} method may be used for
- * rounding a <tt>BigDecimal</tt> so it has a known number of digits after
- * the decimal point.
- *
- * <li>The digit-to-character mapping provided by
- * <tt>Character.forDigit</tt> is used.
- *
- * </ol>
- *
- * @return string representation of this <tt>BigDecimal</tt>.
- * @see Character#forDigit
- * @see #BigDecimal(java.lang.String)
- */
- public String toString() {
- return new String(layoutChars(true));
- }
-
- /**
- * Returns a string representation of this <tt>BigDecimal</tt>,
- * using engineering notation if an exponent is needed.
- *
- * <p>Returns a string that represents the <tt>BigDecimal</tt> as
- * described in the {@link #toString()} method, except that if
- * exponential notation is used, the power of ten is adjusted to
- * be a multiple of three (engineering notation) such that the
- * integer part of nonzero values will be in the range 1 through
- * 999. If exponential notation is used for zero values, a
- * decimal point and one or two fractional zero digits are used so
- * that the scale of the zero value is preserved. Note that
- * unlike the output of {@link #toString()}, the output of this
- * method is <em>not</em> guaranteed to recover the same [integer,
- * scale] pair of this <tt>BigDecimal</tt> if the output string is
- * converting back to a <tt>BigDecimal</tt> using the {@linkplain
- * #BigDecimal(String) string constructor}. The result of this method meets
- * the weaker constraint of always producing a numerically equal
- * result from applying the string constructor to the method's output.
- *
- * @return string representation of this <tt>BigDecimal</tt>, using
- * engineering notation if an exponent is needed.
- * @since 1.5
- */
- public String toEngineeringString() {
- return new String(layoutChars(false));
- }
-
- /**
- * Returns a string representation of this <tt>BigDecimal</tt>
- * without an exponent field. For values with a positive scale,
- * the number of digits to the right of the decimal point is used
- * to indicate scale. For values with a zero or negative scale,
- * the resulting string is generated as if the value were
- * converted to a numerically equal value with zero scale and as
- * if all the trailing zeros of the zero scale value were present
- * in the result.
- *
- * The entire string is prefixed by a minus sign character '-'
- * (<tt>'\u002D'</tt>) if the unscaled value is less than
- * zero. No sign character is prefixed if the unscaled value is
- * zero or positive.
- *
- * Note that if the result of this method is passed to the
- * {@linkplain #BigDecimal(String) string constructor}, only the
- * numerical value of this <tt>BigDecimal</tt> will necessarily be
- * recovered; the representation of the new <tt>BigDecimal</tt>
- * may have a different scale. In particular, if this
- * <tt>BigDecimal</tt> has a positive scale, the string resulting
- * from this method will have a scale of zero when processed by
- * the string constructor.
- *
- * (This method behaves analogously to the <tt>toString</tt>
- * method in 1.4 and earlier releases.)
- *
- * @return a string representation of this <tt>BigDecimal</tt>
- * without an exponent field.
- * @since 1.5
- * @see #toString()
- * @see #toEngineeringString()
- */
- public String toPlainString() {
- BigDecimal bd = this;
- if (bd.scale < 0)
- bd = bd.setScale(0);
- if (bd.scale == 0) /* No decimal point */
- return bd.intVal.toString();
- return bd.getValueString(bd.signum(), bd.intVal.abs().toString(), bd.scale);
- }
-
- /* Returns a digit.digit string */
- private String getValueString(int signum, String intString, int scale) {
- /* Insert decimal point */
- StringBuilder buf;
- int insertionPoint = intString.length() - scale;
- if (insertionPoint == 0) { /* Point goes right before intVal */
- return (signum<0 ? "-0." : "0.") + intString;
- } else if (insertionPoint > 0) { /* Point goes inside intVal */
- buf = new StringBuilder(intString);
- buf.insert(insertionPoint, '.');
- if (signum < 0)
- buf.insert(0, '-');
- } else { /* We must insert zeros between point and intVal */
- buf = new StringBuilder(3-insertionPoint + intString.length());
- buf.append(signum<0 ? "-0." : "0.");
- for (int i=0; i<-insertionPoint; i++)
- buf.append('0');
- buf.append(intString);
- }
- return buf.toString();
- }
-
-
- /**
- * Returns the string representation of this <tt>BigDecimal</tt>,
- * as a character array. This returns a character array that has
- * the same content as a call to {@link #toString()} followed by a
- * call to {@link String#toCharArray()}, but without the overhead
- * of creating the intermediate <tt>String</tt> object.
- *
- * @return <tt>char[]</tt> representation of this <tt>BigDecimal</tt>.
- * @see #toString()
- * @since 1.5
- */
- char[] toCharArray() { // for use within java.math only
- return layoutChars(true);
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>BigInteger</tt>.
- * This conversion is analogous to a <a
- * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
- * primitive conversion</i></a> from <tt>double</tt> to
- * <tt>long</tt> as defined in the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>: any fractional part of this
- * <tt>BigDecimal</tt> will be discarded. Note that this
- * conversion can lose information about the precision of the
- * <tt>BigDecimal</tt> value.
- * <p>
- * To have an exception thrown if the conversion is inexact (in
- * other words if a nonzero fractional part is discarded), use the
- * {@link #toBigIntegerExact()} method.
- *
- * @return this <tt>BigDecimal</tt> converted to a <tt>BigInteger</tt>.
- */
- public BigInteger toBigInteger() {
- // force to an integer, quietly
- return this.setScale(0, ROUND_DOWN).intVal;
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>BigInteger</tt>,
- * checking for lost information. An exception is thrown if this
- * <tt>BigDecimal</tt> has a nonzero fractional part.
- *
- * @return this <tt>BigDecimal</tt> converted to a <tt>BigInteger</tt>.
- * @throws ArithmeticException if <tt>this</tt> has a nonzero
- * fractional part.
- * @since 1.5
- */
- public BigInteger toBigIntegerExact() {
- // round to an integer, with Exception if decimal part non-0
- return this.setScale(0, ROUND_UNNECESSARY).intVal;
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>long</tt>. This
- * conversion is analogous to a <a
- * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
- * primitive conversion</i></a> from <tt>double</tt> to
- * <tt>short</tt> as defined in the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>: any fractional part of this
- * <tt>BigDecimal</tt> will be discarded, and if the resulting
- * "<tt>BigInteger</tt>" is too big to fit in a
- * <tt>long</tt>, only the low-order 64 bits are returned.
- * Note that this conversion can lose information about the
- * overall magnitude and precision of this <tt>BigDecimal</tt> value as well
- * as return a result with the opposite sign.
- *
- * @return this <tt>BigDecimal</tt> converted to an <tt>long</tt>.
- */
- public long longValue(){
- return toBigInteger().longValue();
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>long</tt>, checking
- * for lost information. If this <tt>BigDecimal</tt> has a
- * nonzero fractional part or is out of the possible range for a
- * <tt>long</tt> result then an <tt>ArithmeticException</tt> is
- * thrown.
- *
- * @return this <tt>BigDecimal</tt> converted to a <tt>long</tt>.
- * @throws ArithmeticException if <tt>this</tt> has a nonzero
- * fractional part, or will not fit in a <tt>long</tt>.
- * @since 1.5
- */
- public long longValueExact() {
- // If more than 19 digits in integer part it cannot possibly fit
- if ((precision() - scale) > 19) // [OK for neagtive scale too]
- throw new java.lang.ArithmeticException("Overflow");
- // Fastpath zero and < 1.0 numbers (the latter can be very slow
- // to round if very small)
- if (this.intVal.signum() == 0)
- return 0;
- if ((this.precision() - this.scale) <= 0)
- throw new ArithmeticException("Rounding necessary");
- // round to an integer, with Exception if decimal part non-0
- BigDecimal num = this.setScale(0, ROUND_UNNECESSARY);
- if (num.precision() >= 19) { // need to check carefully
- if (LONGMIN == null) { // initialize constants
- LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
- LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
- }
- if ((num.intVal.compareTo(LONGMIN) < 0) ||
- (num.intVal.compareTo(LONGMAX) > 0))
- throw new java.lang.ArithmeticException("Overflow");
- }
- return num.intVal.longValue();
- }
- // These constants are only initialized if needed
- /** BigInteger equal to Long.MIN_VALUE. */
- private static BigInteger LONGMIN = null;
- /** BigInteger equal to Long.MAX_VALUE. */
- private static BigInteger LONGMAX = null;
-
- /**
- * Converts this <tt>BigDecimal</tt> to an <tt>int</tt>. This
- * conversion is analogous to a <a
- * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
- * primitive conversion</i></a> from <tt>double</tt> to
- * <tt>short</tt> as defined in the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>: any fractional part of this
- * <tt>BigDecimal</tt> will be discarded, and if the resulting
- * "<tt>BigInteger</tt>" is too big to fit in an
- * <tt>int</tt>, only the low-order 32 bits are returned.
- * Note that this conversion can lose information about the
- * overall magnitude and precision of this <tt>BigDecimal</tt>
- * value as well as return a result with the opposite sign.
- *
- * @return this <tt>BigDecimal</tt> converted to an <tt>int</tt>.
- */
- public int intValue() {
- return toBigInteger().intValue();
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to an <tt>int</tt>, checking
- * for lost information. If this <tt>BigDecimal</tt> has a
- * nonzero fractional part or is out of the possible range for an
- * <tt>int</tt> result then an <tt>ArithmeticException</tt> is
- * thrown.
- *
- * @return this <tt>BigDecimal</tt> converted to an <tt>int</tt>.
- * @throws ArithmeticException if <tt>this</tt> has a nonzero
- * fractional part, or will not fit in an <tt>int</tt>.
- * @since 1.5
- */
- public int intValueExact() {
- long num;
- num = this.longValueExact(); // will check decimal part
- if ((int)num != num)
- throw new java.lang.ArithmeticException("Overflow");
- return (int)num;
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>short</tt>, checking
- * for lost information. If this <tt>BigDecimal</tt> has a
- * nonzero fractional part or is out of the possible range for a
- * <tt>short</tt> result then an <tt>ArithmeticException</tt> is
- * thrown.
- *
- * @return this <tt>BigDecimal</tt> converted to a <tt>short</tt>.
- * @throws ArithmeticException if <tt>this</tt> has a nonzero
- * fractional part, or will not fit in a <tt>short</tt>.
- * @since 1.5
- */
- public short shortValueExact() {
- long num;
- num = this.longValueExact(); // will check decimal part
- if ((short)num != num)
- throw new java.lang.ArithmeticException("Overflow");
- return (short)num;
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>byte</tt>, checking
- * for lost information. If this <tt>BigDecimal</tt> has a
- * nonzero fractional part or is out of the possible range for a
- * <tt>byte</tt> result then an <tt>ArithmeticException</tt> is
- * thrown.
- *
- * @return this <tt>BigDecimal</tt> converted to an <tt>byte</tt>.
- * @throws ArithmeticException if <tt>this</tt> has a nonzero
- * fractional part, or will not fit in a <tt>byte</tt>.
- * @since 1.5
- */
- public byte byteValueExact() {
- long num;
- num = this.longValueExact(); // will check decimal part
- if ((byte)num != num)
- throw new java.lang.ArithmeticException("Overflow");
- return (byte)num;
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>float</tt>.
- * This conversion is similar to the <a
- * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
- * primitive conversion</i></a> from <tt>double</tt> to
- * <tt>float</tt> defined in the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>: if this <tt>BigDecimal</tt> has too great a
- * magnitude to represent as a <tt>float</tt>, it will be
- * converted to {@link Float#NEGATIVE_INFINITY} or {@link
- * Float#POSITIVE_INFINITY} as appropriate. Note that even when
- * the return value is finite, this conversion can lose
- * information about the precision of the <tt>BigDecimal</tt>
- * value.
- *
- * @return this <tt>BigDecimal</tt> converted to a <tt>float</tt>.
- */
- public float floatValue(){
- /* Somewhat inefficient, but guaranteed to work. */
- return Float.valueOf(this.toString()).floatValue();
- }
-
- /**
- * Converts this <tt>BigDecimal</tt> to a <tt>double</tt>.
- * This conversion is similar to the <a
- * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
- * primitive conversion</i></a> from <tt>double</tt> to
- * <tt>float</tt> as defined in the <a
- * href="http://java.sun.com/docs/books/jls/html/">Java Language
- * Specification</a>: if this <tt>BigDecimal</tt> has too great a
- * magnitude represent as a <tt>double</tt>, it will be
- * converted to {@link Double#NEGATIVE_INFINITY} or {@link
- * Double#POSITIVE_INFINITY} as appropriate. Note that even when
- * the return value is finite, this conversion can lose
- * information about the precision of the <tt>BigDecimal</tt>
- * value.
- *
- * @return this <tt>BigDecimal</tt> converted to a <tt>double</tt>.
- */
- public double doubleValue(){
- /* Somewhat inefficient, but guaranteed to work. */
- return Double.valueOf(this.toString()).doubleValue();
- }
-
- /**
- * Returns the size of an ulp, a unit in the last place, of this
- * <tt>BigDecimal</tt>. An ulp of a nonzero <tt>BigDecimal</tt>
- * value is the positive distance between this value and the
- * <tt>BigDecimal</tt> value next larger in magnitude with the
- * same number of digits. An ulp of a zero value is numerically
- * equal to 1 with the scale of <tt>this</tt>. The result is
- * stored with the same scale as <code>this</code> so the result
- * for zero and nonzero values is equal to <code>[1,
- * this.scale()]</code>.
- *
- * @return the size of an ulp of <tt>this</tt>
- * @since 1.5
- */
- public BigDecimal ulp() {
- return new BigDecimal(BigInteger.ONE, this.scale());
- }
-
- // Private "Helper" Methods
-
- /**
- * Lay out this <tt>BigDecimal</tt> into a <tt>char[]</tt> array.
- * The Java 1.2 equivalent to this was called <tt>getValueString</tt>.
- *
- * @param sci <tt>true</tt> for Scientific exponential notation;
- * <tt>false</tt> for Engineering
- * @return <tt>char[]</tt> array with canonical string
- * representation of this <tt>BigDecimal</tt>
- */
- private char[] layoutChars(boolean sci) {
- if (scale == 0) // zero scale is trivial
- return intVal.toString().toCharArray();
- // get the significand as an absolute value
- char coeff[] = intVal.abs().toString().toCharArray();
- // Construct a buffer, with sufficient capacity for all cases.
- // If E-notation is needed, length will be: +1 if negative, +1
- // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
- // Otherwise it could have +1 if negative, plus leading "0.00000"
- StringBuilder buf=new StringBuilder(coeff.length+14);
- if (intVal.signum() < 0) // prefix '-' if negative
- buf.append('-');
- long adjusted = -(long)scale + (coeff.length-1);
- if ((scale >= 0) && (adjusted >= -6)) { // plain number
- int pad = scale - coeff.length; // count of padding zeros
- if (pad >= 0) { // 0.xxx form
- buf.append('0');
- buf.append('.');
- for (; pad>0; pad--) {
- buf.append('0');
- }
- buf.append(coeff);
- } else { // xx.xx form
- buf.append(coeff, 0, -pad);
- buf.append('.');
- buf.append(coeff, -pad, scale);
- }
- } else { // E-notation is needed
- if (sci) { // Scientific notation
- buf.append(coeff[0]); // first character
- if (coeff.length > 1) { // more to come
- buf.append('.');
- buf.append(coeff, 1, coeff.length-1);
- }
- } else { // Engineering notation
- int sig = (int)(adjusted % 3);
- if (sig < 0)
- sig += 3; // [adjusted was negative]
- adjusted -= sig; // now a multiple of 3
- sig++;
- if (intVal.signum() == 0) {
- switch (sig) {
- case 1:
- buf.append('0'); // exponent is a multiple of three
- break;
- case 2:
- buf.append("0.00");
- adjusted += 3;
- break;
- case 3:
- buf.append("0.0");
- adjusted += 3;
- break;
- default:
- throw new AssertionError("Unexpected sig value " + sig);
- }
- } else if (sig >= coeff.length) { // significand all in integer
- buf.append(coeff, 0, coeff.length);
- // may need some zeros, too
- for (int i = sig - coeff.length; i > 0; i--)
- buf.append('0');
- } else { // xx.xxE form
- buf.append(coeff, 0, sig);
- buf.append('.');
- buf.append(coeff, sig, coeff.length-sig);
- }
- }
- if (adjusted != 0) { // [!sci could have made 0]
- buf.append('E');
- if (adjusted > 0) // force sign for positive
- buf.append('+');
- buf.append(adjusted);
- }
- }
- char result[] = new char[buf.length()];
- buf.getChars(0, result.length, result, 0);
- return result;
- }
-
- /**
- * Return 10 to the power n, as a <tt>BigInteger</tt>.
- *
- * @param n the power of ten to be returned (>=0)
- * @return a <tt>BigInteger</tt> with the value (10<sup>n</sup>)
- */
- private static BigInteger tenToThe(int n) {
- if (n < TENPOWERS.length) // use value from constant array
- return TENPOWERS[n];
- // BigInteger.pow is slow, so make 10**n by constructing a
- // BigInteger from a character string (still not very fast)
- char tenpow[] = new char[n + 1];
- tenpow[0] = '1';
- for (int i = 1; i <= n; i++) tenpow[i] = '0';
- return new BigInteger(tenpow);
- }
- private static BigInteger TENPOWERS[] = {BigInteger.ONE,
- BigInteger.valueOf(10), BigInteger.valueOf(100),
- BigInteger.valueOf(1000), BigInteger.valueOf(10000),
- BigInteger.valueOf(100000), BigInteger.valueOf(1000000),
- BigInteger.valueOf(10000000), BigInteger.valueOf(100000000),
- BigInteger.valueOf(1000000000)};
-
- /**
- * Match the scales of two <tt>BigDecimal<tt>s to align their
- * least significant digits.
- *
- * <p>If the scales of val[0] and val[1] differ, rescale
- * (non-destructively) the lower-scaled <tt>BigDecimal</tt> so
- * they match. That is, the lower-scaled reference will be
- * replaced by a reference to a new object with the same scale as
- * the other <tt>BigDecimal</tt>.
- *
- * @param val array of two elements referring to the two
- * <tt>BigDecimal</tt>s to be aligned.
- */
- private static void matchScale(BigDecimal[] val) {
- if (val[0].scale < val[1].scale)
- val[0] = val[0].setScale(val[1].scale);
- else if (val[1].scale < val[0].scale)
- val[1] = val[1].setScale(val[0].scale);
- }
-
- /**
- * Reconstitute the <tt>BigDecimal</tt> instance from a stream (that is,
- * deserialize it).
- *
- * @param s the stream being read.
- */
- private synchronized void readObject(java.io.ObjectInputStream s)
- throws java.io.IOException, ClassNotFoundException {
- // Read in all fields
- s.defaultReadObject();
- // validate possibly bad fields
- if (intVal == null) {
- String message = "BigDecimal: null intVal in stream";
- throw new java.io.StreamCorruptedException(message);
- // [all values of scale are now allowed]
- }
- }
-
- /**
- * Returns the length of this <tt>BigDecimal</tt>, in decimal digits.
- *
- * Notes:
- *<ul>
- * <li> This is performance-critical; most operations where a
- * context is supplied will need at least one call to this
- * method.
- *
- * <li> This should be a method on BigInteger; the call to this
- * method in precision() can then be replaced with the
- * term: intVal.digitLength(). It could also be called
- * precision() in BigInteger.
- *
- * Better still -- the precision lookaside could be moved to
- * BigInteger, too.
- *
- * <li> This could/should use MutableBigIntegers directly for the
- * reduction loop.
- *<ul>
- * @return the length of the unscaled value, in decimal digits
- */
- private int digitLength() {
- if (intVal.signum() == 0) // 0 is one decimal digit
- return 1;
- // we have a nonzero magnitude
- BigInteger work = intVal;
- int digits = 0; // counter
- for (;work.mag.length>1;) {
- // here when more than one integer in the magnitude; divide
- // by a billion (reduce by 9 digits) and try again
- work = work.divide(TENPOWERS[9]);
- digits += 9;
- if (work.signum() == 0) // the division was exact
- return digits; // (a power of a billion)
- }
- // down to a simple nonzero integer
- digits += intLength(work.mag[0]);
- // System.out.println("digitLength... "+this+" -> "+digits);
- return digits;
- }
-
- /**
- * Returns the length of an unsigned <tt>int</tt>, in decimal digits.
- * @param i the <tt>int</tt> (treated as unsigned)
- * @return the length of the unscaled value, in decimal digits
- */
- private int intLength(int i) {
- int digits;
- if (i < 0) { // 'negative' is 10 digits unsigned
- digits = 10;
- } else { // positive integer
- // binary search, weighted low (maximum 4 tests)
- if (i < 10000) {
- if (i < 100) {
- if (i < 10) digits = 1;
- else digits = 2;
- } else {
- if (i < 1000) digits = 3;
- else digits = 4;
- }
- } else {
- if (i < 1000000) {
- if (i < 100000) digits = 5;
- else digits = 6;
- } else {
- if (i < 100000000) {
- if (i < 10000000) digits = 7;
- else digits = 8;
- } else {
- if (i < 1000000000) digits = 9;
- else digits = 10;
- }
- }
- }
- }
- return digits;
- }
-
- /**
- * Remove insignificant trailing zeros from this
- * <tt>BigDecimal</tt> until the preferred scale is reached or no
- * more zeros can be removed. If the preferred scale is less than
- * Integer.MIN_VALUE, all the trailing zeros will be removed.
- *
- * <tt>BigInteger</tt> assistance could help, here?
- *
- * @return this <tt>BigDecimal</tt> with a scale possibly reduced
- * to be closed to the preferred scale.
- */
- private BigDecimal stripZerosToMatchScale(long preferredScale) {
- BigInteger qr[]; // quotient-remainder pair
- while ( intVal.abs().compareTo(BigInteger.TEN) >= 0 &&
- scale > preferredScale) {
- if (intVal.testBit(0))
- break; // odd number cannot end in 0
- qr = intVal.divideAndRemainder(BigInteger.TEN);
- if (qr[1].signum() != 0)
- break; // non-0 remainder
- intVal=qr[0];
- scale = checkScale((long)scale-1); // could Overflow
- if (precision > 0) // adjust precision if known
- precision--;
- }
- return this;
- }
-
- /**
- * Check a scale for Underflow or Overflow
- *
- * @param val The new scale.
- * @throws ArithmeticException (overflow or underflow) if the new
- * scale is out of range.
- * @return validated scale as an int.
- */
- private int checkScale(long val) {
- if ((int)val != val) {
- if ((this.intVal != null && this.signum() != 0) ||
- this.intVal == null ) {
- if (val > Integer.MAX_VALUE)
- throw new ArithmeticException("Underflow");
- if (val < Integer.MIN_VALUE)
- throw new ArithmeticException("Overflow");
- } else {
- return (val > Integer.MAX_VALUE)?Integer.MAX_VALUE:Integer.MIN_VALUE;
- }
- }
- return (int)val;
- }
-
- /**
- * Round an operand; used only if digits > 0. Does not change
- * <tt>this</tt> if rounding is needed a new <tt>BigDecimal</tt>
- * is created and returned.
- *
- * @param mc the context to use.
- * @throws ArithmeticException if the result is inexact but the
- * rounding mode is <tt>UNNECESSARY</tt>.
- */
- private BigDecimal roundOp(MathContext mc) {
- BigDecimal rounded = doRound(mc);
- return rounded;
- }
-
- /** Round this BigDecimal according to the MathContext settings;
- * used only if precision > 0.
- *
- * @param mc the context to use.
- * @throws ArithmeticException if the rounding mode is
- * <tt>RoundingMode.UNNECESSARY</tt> and the
- * <tt>BigDecimal</tt> operation would require rounding.
- */
- private void roundThis(MathContext mc) {
- BigDecimal rounded = doRound(mc);
- if (rounded == this) // wasn't rounded
- return;
- this.intVal = rounded.intVal;
- this.scale = rounded.scale;
- this.precision = rounded.precision;
- return;
- }
-
- /**
- * Returns a <tt>BigDecimal</tt> rounded according to the
- * MathContext settings; used only if <tt>mc.precision>0</tt>.
- * Does not change <tt>this</tt> if rounding is needed a new
- * <tt>BigDecimal</tt> is created and returned.
- *
- * @param mc the context to use.
- * @return a <tt>BigDecimal</tt> rounded according to the MathContext
- * settings. May return this, if no rounding needed.
- * @throws ArithmeticException if the rounding mode is
- * <tt>RoundingMode.UNNECESSARY</tt> and the
- * result is inexact.
- */
- private BigDecimal doRound(MathContext mc) {
- if (precision == 0) {
- if (mc.roundingMax != null
- && intVal.compareTo(mc.roundingMax) < 0
- && intVal.compareTo(mc.roundingMin) > 0)
- return this; // no rounding needed
- precision(); // find it
- }
- int drop = precision - mc.precision; // digits to discard
- if (drop <= 0) // we fit
- return this;
- BigDecimal rounded = dropDigits(mc, drop);
- // we need to double-check, in case of the 999=>1000 case
- return rounded.doRound(mc);
- }
-
- /**
- * Removes digits from the significand of a <tt>BigDecimal</tt>,
- * rounding according to the MathContext settings. Does not
- * change <tt>this</tt> a new <tt>BigDecimal</tt> is always
- * created and returned.
- *
- * <p>Actual rounding is carried out, as before, by the divide
- * method, as this minimized code changes. It might be more
- * efficient in most cases to move rounding to here, so we can do
- * a round-to-length rather than round-to-scale.
- *
- * @param mc the context to use.
- * @param drop the number of digits to drop, must be > 0
- * @return a <tt>BigDecimal</tt> rounded according to the MathContext
- * settings. May return <tt>this</tt>, if no rounding needed.
- * @throws ArithmeticException if the rounding mode is
- * <tt>RoundingMode.UNNECESSARY</tt> and the
- * result is inexact.
- */
- private BigDecimal dropDigits(MathContext mc, int drop) {
- // here if we need to round; make the divisor = 10**drop)
- // [calculating the BigInteger here saves setScale later]
- BigDecimal divisor = new BigDecimal(tenToThe(drop), 0);
-
- // divide to same scale to force round to length
- BigDecimal rounded = this.divide(divisor, scale,
- mc.roundingMode.oldMode);
- rounded.scale -= drop; // adjust the scale
- return rounded;
- }
- }