- /*
- * @(#)CubicCurve2D.java 1.29 03/12/19
- *
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
- */
-
- package java.awt.geom;
-
- import java.awt.Shape;
- import java.awt.Rectangle;
- import java.util.Arrays;
-
- /**
- * The <code>CubicCurve2D</code> class defines a cubic parametric curve
- * segment in (x, y) coordinate space.
- * <p>
- * This class is only the abstract superclass for all objects which
- * store a 2D cubic curve segment.
- * The actual storage representation of the coordinates is left to
- * the subclass.
- *
- * @version 1.29, 12/19/03
- * @author Jim Graham
- */
- public abstract class CubicCurve2D implements Shape, Cloneable {
- /**
- * A cubic parametric curve segment specified with float coordinates.
- */
- public static class Float extends CubicCurve2D {
- /**
- * The X coordinate of the start point
- * of the cubic curve segment.
- */
- public float x1;
-
- /**
- * The Y coordinate of the start point
- * of the cubic curve segment.
- */
- public float y1;
-
- /**
- * The X coordinate of the first control point
- * of the cubic curve segment.
- */
- public float ctrlx1;
-
- /**
- * The Y coordinate of the first control point
- * of the cubic curve segment.
- */
- public float ctrly1;
-
- /**
- * The X coordinate of the second control point
- * of the cubic curve segment.
- */
- public float ctrlx2;
-
- /**
- * The Y coordinate of the second control point
- * of the cubic curve segment.
- */
- public float ctrly2;
-
- /**
- * The X coordinate of the end point
- * of the cubic curve segment.
- */
- public float x2;
-
- /**
- * The Y coordinate of the end point
- * of the cubic curve segment.
- */
- public float y2;
-
- /**
- * Constructs and initializes a CubicCurve with coordinates
- * (0, 0, 0, 0, 0, 0).
- */
- public Float() {
- }
-
- /**
- * Constructs and initializes a <code>CubicCurve2D</code> from
- * the specified coordinates.
- * @param x1, y1 the first specified coordinates for the start
- * point of the resulting <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates for the
- * first control point of the resulting
- * <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates for the
- * second control point of the resulting
- * <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates for the end
- * point of the resulting <code>CubicCurve2D</code>
- */
- public Float(float x1, float y1,
- float ctrlx1, float ctrly1,
- float ctrlx2, float ctrly2,
- float x2, float y2) {
- setCurve(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2);
- }
-
- /**
- * Returns the X coordinate of the start point
- * in double precision.
- * @return the X coordinate of the start point of the
- * <code>CubicCurve2D</code>.
- */
- public double getX1() {
- return (double) x1;
- }
-
- /**
- * Returns the Y coordinate of the start point
- * in double precision.
- * @return the Y coordinate of the start point of the
- * <code>CubicCurve2D</code>.
- */
- public double getY1() {
- return (double) y1;
- }
-
- /**
- * Returns the start point.
- * @return a {@link Point2D} that is the start point of the
- * <code>CubicCurve2D</code>.
- */
- public Point2D getP1() {
- return new Point2D.Float(x1, y1);
- }
-
- /**
- * Returns the X coordinate of the first control point
- * in double precision.
- * @return the X coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlX1() {
- return (double) ctrlx1;
- }
-
- /**
- * Returns the Y coordinate of the first control point
- * in double precision.
- * @return the Y coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlY1() {
- return (double) ctrly1;
- }
-
- /**
- * Returns the first control point.
- * @return a <code>Point2D</code> that is the first control point
- * of the <code>CubicCurve2D</code>.
- */
- public Point2D getCtrlP1() {
- return new Point2D.Float(ctrlx1, ctrly1);
- }
-
- /**
- * Returns the X coordinate of the second control point
- * in double precision.
- * @return the X coordinate of the second control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlX2() {
- return (double) ctrlx2;
- }
-
- /**
- * Returns the Y coordinate of the second control point
- * in double precision.
- * @return the Y coordinate of the second control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlY2() {
- return (double) ctrly2;
- }
-
- /**
- * Returns the second control point.
- * @return a <code>Point2D</code> that is the second control point
- * of the <code>CubicCurve2D</code>.
- */
- public Point2D getCtrlP2() {
- return new Point2D.Float(ctrlx2, ctrly2);
- }
-
- /**
- * Returns the X coordinate of the end point
- * in double precision.
- * @return the X coordinate of the end point of the
- * <code>CubicCurve2D</code>.
- */
- public double getX2() {
- return (double) x2;
- }
-
- /**
- * Returns the Y coordinate of the end point
- * in double precision.
- * @return the Y coordinate of the end point of the
- * <code>CubicCurve2D</code>.
- */
- public double getY2() {
- return (double) y2;
- }
-
- /**
- * Returns the end point.
- * @return a <code>Point2D</code> that is the end point
- * of the <code>CubicCurve2D</code>.
- */
- public Point2D getP2() {
- return new Point2D.Float(x2, y2);
- }
-
- /**
- * Sets the location of the endpoints and controlpoints
- * of this <code>CubicCurve2D</code> to the specified double
- * coordinates.
- * @param x1, y1 the first specified coordinates used to set the start
- * point of this <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates used to set the
- * first control point of this <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates used to set the
- * second control point of this <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates used to set the end
- * point of this <code>CubicCurve2D</code>
- */
- public void setCurve(double x1, double y1,
- double ctrlx1, double ctrly1,
- double ctrlx2, double ctrly2,
- double x2, double y2) {
- this.x1 = (float) x1;
- this.y1 = (float) y1;
- this.ctrlx1 = (float) ctrlx1;
- this.ctrly1 = (float) ctrly1;
- this.ctrlx2 = (float) ctrlx2;
- this.ctrly2 = (float) ctrly2;
- this.x2 = (float) x2;
- this.y2 = (float) y2;
- }
-
- /**
- * Sets the location of the endpoints and controlpoints
- * of this curve to the specified float coordinates.
- * @param x1, y1 the first specified coordinates used to set the start
- * point of this <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates used to set the
- * first control point of this <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates used to set the
- * second control point of this <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates used to set the end
- * point of this <code>CubicCurve2D</code>
- */
- public void setCurve(float x1, float y1,
- float ctrlx1, float ctrly1,
- float ctrlx2, float ctrly2,
- float x2, float y2) {
- this.x1 = x1;
- this.y1 = y1;
- this.ctrlx1 = ctrlx1;
- this.ctrly1 = ctrly1;
- this.ctrlx2 = ctrlx2;
- this.ctrly2 = ctrly2;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Returns the bounding box of the shape.
- * @return a {@link Rectangle2D} that is the bounding box of the
- * shape.
- */
- public Rectangle2D getBounds2D() {
- float left = Math.min(Math.min(x1, x2),
- Math.min(ctrlx1, ctrlx2));
- float top = Math.min(Math.min(y1, y2),
- Math.min(ctrly1, ctrly2));
- float right = Math.max(Math.max(x1, x2),
- Math.max(ctrlx1, ctrlx2));
- float bottom = Math.max(Math.max(y1, y2),
- Math.max(ctrly1, ctrly2));
- return new Rectangle2D.Float(left, top,
- right - left, bottom - top);
- }
- }
-
- /**
- * A cubic parametric curve segment specified with double coordinates.
- */
- public static class Double extends CubicCurve2D {
- /**
- * The X coordinate of the start point
- * of the cubic curve segment.
- */
- public double x1;
-
- /**
- * The Y coordinate of the start point
- * of the cubic curve segment.
- */
- public double y1;
-
- /**
- * The X coordinate of the first control point
- * of the cubic curve segment.
- */
- public double ctrlx1;
-
- /**
- * The Y coordinate of the first control point
- * of the cubic curve segment.
- */
- public double ctrly1;
-
- /**
- * The X coordinate of the second control point
- * of the cubic curve segment.
- */
- public double ctrlx2;
-
- /**
- * The Y coordinate of the second control point
- * of the cubic curve segment.
- */
- public double ctrly2;
-
- /**
- * The X coordinate of the end point
- * of the cubic curve segment.
- */
- public double x2;
-
- /**
- * The Y coordinate of the end point
- * of the cubic curve segment.
- */
- public double y2;
-
- /**
- * Constructs and initializes a CubicCurve with coordinates
- * (0, 0, 0, 0, 0, 0).
- */
- public Double() {
- }
-
- /**
- * Constructs and initializes a <code>CubicCurve2D</code> from
- * the specified coordinates.
- * @param x1, y1 the first specified coordinates for the start
- * point of the resulting <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates for the
- * first control point of the resulting
- * <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates for the
- * second control point of the resulting
- * <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates for the end
- * point of the resulting <code>CubicCurve2D</code>
- */
- public Double(double x1, double y1,
- double ctrlx1, double ctrly1,
- double ctrlx2, double ctrly2,
- double x2, double y2) {
- setCurve(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2);
- }
-
- /**
- * Returns the X coordinate of the start point
- * in double precision.
- * @return the X coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getX1() {
- return x1;
- }
-
- /**
- * Returns the Y coordinate of the start point
- * in double precision.
- * @return the Y coordinate of the start point of the
- * <code>CubicCurve2D</code>.
- */
- public double getY1() {
- return y1;
- }
-
- /**
- * Returns the start point.
- * @return a <code>Point2D</code> that is the start point of the
- * <code>CubicCurve2D</code>.
- */
- public Point2D getP1() {
- return new Point2D.Double(x1, y1);
- }
-
- /**
- * Returns the X coordinate of the first control point
- * in double precision.
- * @return the X coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlX1() {
- return ctrlx1;
- }
-
- /**
- * Returns the Y coordinate of the first control point
- * in double precision.
- * @return the Y coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlY1() {
- return ctrly1;
- }
-
- /**
- * Returns the first control point.
- * @return a <code>Point2D</code> that is the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public Point2D getCtrlP1() {
- return new Point2D.Double(ctrlx1, ctrly1);
- }
-
- /**
- * Returns the X coordinate of the second control point
- * in double precision.
- * @return the X coordinate of the second control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlX2() {
- return ctrlx2;
- }
-
- /**
- * Returns the Y coordinate of the second control point
- * in double precision.
- * @return the Y coordinate of the second control point of the
- * <code>CubicCurve2D</code>.
- */
- public double getCtrlY2() {
- return ctrly2;
- }
-
- /**
- * Returns the second control point.
- * @return a <code>Point2D</code> that is the second control point of
- * the <code>CubicCurve2D</code>.
- */
- public Point2D getCtrlP2() {
- return new Point2D.Double(ctrlx2, ctrly2);
- }
-
- /**
- * Returns the X coordinate of the end point
- * in double precision.
- * @return the X coordinate of the end point of the
- * <code>CubicCurve2D</code>.
- */
- public double getX2() {
- return x2;
- }
-
- /**
- * Returns the Y coordinate of the end point
- * in double precision.
- * @return the Y coordinate of the end point of the
- * <code>CubicCurve2D</code>.
- */
- public double getY2() {
- return y2;
- }
-
- /**
- * Returns the end point.
- * @return a <code>Point2D</code> that is the end point of
- * the <code>CubicCurve2D</code>.
- */
- public Point2D getP2() {
- return new Point2D.Double(x2, y2);
- }
-
- /**
- * Sets the location of the endpoints and controlpoints
- * of this curve to the specified double coordinates.
- * @param x1, y1 the first specified coordinates used to set the start
- * point of this <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates used to set the
- * first control point of this <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates used to set the
- * second control point of this <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates used to set the end
- * point of this <code>CubicCurve2D</code>
- */
- public void setCurve(double x1, double y1,
- double ctrlx1, double ctrly1,
- double ctrlx2, double ctrly2,
- double x2, double y2) {
- this.x1 = x1;
- this.y1 = y1;
- this.ctrlx1 = ctrlx1;
- this.ctrly1 = ctrly1;
- this.ctrlx2 = ctrlx2;
- this.ctrly2 = ctrly2;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Returns the bounding box of the shape.
- * @return a <code>Rectangle2D</code> that is the bounding box
- * of the shape.
- */
- public Rectangle2D getBounds2D() {
- double left = Math.min(Math.min(x1, x2),
- Math.min(ctrlx1, ctrlx2));
- double top = Math.min(Math.min(y1, y2),
- Math.min(ctrly1, ctrly2));
- double right = Math.max(Math.max(x1, x2),
- Math.max(ctrlx1, ctrlx2));
- double bottom = Math.max(Math.max(y1, y2),
- Math.max(ctrly1, ctrly2));
- return new Rectangle2D.Double(left, top,
- right - left, bottom - top);
- }
- }
-
- /**
- * This is an abstract class that cannot be instantiated directly.
- * Type-specific implementation subclasses are available for
- * instantiation and provide a number of formats for storing
- * the information necessary to satisfy the various accessor
- * methods below.
- *
- * @see java.awt.geom.CubicCurve2D.Float
- * @see java.awt.geom.CubicCurve2D.Double
- */
- protected CubicCurve2D() {
- }
-
- /**
- * Returns the X coordinate of the start point in double precision.
- * @return the X coordinate of the start point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getX1();
-
- /**
- * Returns the Y coordinate of the start point in double precision.
- * @return the Y coordinate of the start point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getY1();
-
- /**
- * Returns the start point.
- * @return a <code>Point2D</code> that is the start point of
- * the <code>CubicCurve2D</code>.
- */
- public abstract Point2D getP1();
-
- /**
- * Returns the X coordinate of the first control point in double precision.
- * @return the X coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getCtrlX1();
-
- /**
- * Returns the Y coordinate of the first control point in double precision.
- * @return the Y coordinate of the first control point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getCtrlY1();
-
- /**
- * Returns the first control point.
- * @return a <code>Point2D</code> that is the first control point of
- * the <code>CubicCurve2D</code>.
- */
- public abstract Point2D getCtrlP1();
-
- /**
- * Returns the X coordinate of the second control point
- * in double precision.
- * @return the X coordinate of the second control point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getCtrlX2();
-
- /**
- * Returns the Y coordinate of the second control point
- * in double precision.
- * @return the Y coordinate of the second control point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getCtrlY2();
-
- /**
- * Returns the second control point.
- * @return a <code>Point2D</code> that is the second control point of
- * the <code>CubicCurve2D</code>.
- */
- public abstract Point2D getCtrlP2();
-
- /**
- * Returns the X coordinate of the end point in double precision.
- * @return the X coordinate of the end point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getX2();
-
- /**
- * Returns the Y coordinate of the end point in double precision.
- * @return the Y coordinate of the end point of the
- * <code>CubicCurve2D</code>.
- */
- public abstract double getY2();
-
- /**
- * Returns the end point.
- * @return a <code>Point2D</code> that is the end point of
- * the <code>CubicCurve2D</code>.
- */
- public abstract Point2D getP2();
-
- /**
- * Sets the location of the endpoints and controlpoints of this curve
- * to the specified double coordinates.
- * @param x1, y1 the first specified coordinates used to set the start
- * point of this <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates used to set the
- * first control point of this <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates used to set the
- * second control point of this <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates used to set the end
- * point of this <code>CubicCurve2D</code>
- */
- public abstract void setCurve(double x1, double y1,
- double ctrlx1, double ctrly1,
- double ctrlx2, double ctrly2,
- double x2, double y2);
-
- /**
- * Sets the location of the endpoints and controlpoints of this curve
- * to the double coordinates at the specified offset in the specified
- * array.
- * @param coords a double array containing coordinates
- * @param offset the index of <code>coords</code> at which to begin
- * setting the endpoints and controlpoints of this curve
- * to the coordinates contained in <code>coords</code>
- */
- public void setCurve(double[] coords, int offset) {
- setCurve(coords[offset + 0], coords[offset + 1],
- coords[offset + 2], coords[offset + 3],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 6], coords[offset + 7]);
- }
-
- /**
- * Sets the location of the endpoints and controlpoints of this curve
- * to the specified <code>Point2D</code> coordinates.
- * @param p1 the first specified <code>Point2D</code> used to set the
- * start point of this curve
- * @param cp1 the second specified <code>Point2D</code> used to set the
- * first control point of this curve
- * @param cp2 the third specified <code>Point2D</code> used to set the
- * second control point of this curve
- * @param p2 the fourth specified <code>Point2D</code> used to set the
- * end point of this curve
- */
- public void setCurve(Point2D p1, Point2D cp1, Point2D cp2, Point2D p2) {
- setCurve(p1.getX(), p1.getY(), cp1.getX(), cp1.getY(),
- cp2.getX(), cp2.getY(), p2.getX(), p2.getY());
- }
-
- /**
- * Sets the location of the endpoints and controlpoints of this curve
- * to the coordinates of the <code>Point2D</code> objects at the specified
- * offset in the specified array.
- * @param pts an array of <code>Point2D</code> objects
- * @param offset the index of <code>pts</code> at which to begin setting
- * the endpoints and controlpoints of this curve to the
- * points contained in <code>pts</code>
- */
- public void setCurve(Point2D[] pts, int offset) {
- setCurve(pts[offset + 0].getX(), pts[offset + 0].getY(),
- pts[offset + 1].getX(), pts[offset + 1].getY(),
- pts[offset + 2].getX(), pts[offset + 2].getY(),
- pts[offset + 3].getX(), pts[offset + 3].getY());
- }
-
- /**
- * Sets the location of the endpoints and controlpoints of this curve
- * to the same as those in the specified <code>CubicCurve2D</code>.
- * @param c the specified <code>CubicCurve2D</code>
- */
- public void setCurve(CubicCurve2D c) {
- setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
- c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
- }
-
- /**
- * Returns the square of the flatness of the cubic curve specified
- * by the indicated controlpoints. The flatness is the maximum distance
- * of a controlpoint from the line connecting the endpoints.
- * @param x1, y1 the first specified coordinates that specify the start
- * point of a <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates that specify the
- * first control point of a <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates that specify the
- * second control point of a <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates that specify the
- * end point of a <code>CubicCurve2D</code>
- * @return the square of the flatness of the <code>CubicCurve2D</code>
- * represented by the specified coordinates.
- */
- public static double getFlatnessSq(double x1, double y1,
- double ctrlx1, double ctrly1,
- double ctrlx2, double ctrly2,
- double x2, double y2) {
- return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx1, ctrly1),
- Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx2, ctrly2));
-
- }
-
- /**
- * Returns the flatness of the cubic curve specified
- * by the indicated controlpoints. The flatness is the maximum distance
- * of a controlpoint from the line connecting the endpoints.
- * @param x1, y1 the first specified coordinates that specify the start
- * point of a <code>CubicCurve2D</code>
- * @param ctrlx1, ctrly1 the second specified coordinates that specify the
- * first control point of a <code>CubicCurve2D</code>
- * @param ctrlx2, ctrly2 the third specified coordinates that specify the
- * second control point of a <code>CubicCurve2D</code>
- * @param x2, y2 the fourth specified coordinates that specify the
- * end point of a <code>CubicCurve2D</code>
- * @return the flatness of the <code>CubicCurve2D</code>
- * represented by the specified coordinates.
- */
- public static double getFlatness(double x1, double y1,
- double ctrlx1, double ctrly1,
- double ctrlx2, double ctrly2,
- double x2, double y2) {
- return Math.sqrt(getFlatnessSq(x1, y1, ctrlx1, ctrly1,
- ctrlx2, ctrly2, x2, y2));
- }
-
- /**
- * Returns the square of the flatness of the cubic curve specified
- * by the controlpoints stored in the indicated array at the
- * indicated index. The flatness is the maximum distance
- * of a controlpoint from the line connecting the endpoints.
- * @param coords an array containing coordinates
- * @param offset the index of <code>coords</code> at which to begin
- * setting the endpoints and controlpoints of this curve
- * to the coordinates contained in <code>coords</code>
- * @return the square of the flatness of the <code>CubicCurve2D</code>
- * specified by the coordinates in <code>coords</code> at
- * the specified offset.
- */
- public static double getFlatnessSq(double coords[], int offset) {
- return getFlatnessSq(coords[offset + 0], coords[offset + 1],
- coords[offset + 2], coords[offset + 3],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 6], coords[offset + 7]);
- }
-
- /**
- * Returns the flatness of the cubic curve specified
- * by the controlpoints stored in the indicated array at the
- * indicated index. The flatness is the maximum distance
- * of a controlpoint from the line connecting the endpoints.
- * @param coords an array containing coordinates
- * @param offset the index of <code>coords</code> at which to begin
- * setting the endpoints and controlpoints of this curve
- * to the coordinates contained in <code>coords</code>
- * @return the flatness of the <code>CubicCurve2D</code>
- * specified by the coordinates in <code>coords</code> at
- * the specified offset.
- */
- public static double getFlatness(double coords[], int offset) {
- return getFlatness(coords[offset + 0], coords[offset + 1],
- coords[offset + 2], coords[offset + 3],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 6], coords[offset + 7]);
- }
-
- /**
- * Returns the square of the flatness of this curve. The flatness is the
- * maximum distance of a controlpoint from the line connecting the
- * endpoints.
- * @return the square of the flatness of this curve.
- */
- public double getFlatnessSq() {
- return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
- getCtrlX2(), getCtrlY2(), getX2(), getY2());
- }
-
- /**
- * Returns the flatness of this curve. The flatness is the
- * maximum distance of a controlpoint from the line connecting the
- * endpoints.
- * @return the flatness of this curve.
- */
- public double getFlatness() {
- return getFlatness(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
- getCtrlX2(), getCtrlY2(), getX2(), getY2());
- }
-
- /**
- * Subdivides this cubic curve and stores the resulting two
- * subdivided curves into the left and right curve parameters.
- * Either or both of the left and right objects may be the same
- * as this object or null.
- * @param left the cubic curve object for storing for the left or
- * first half of the subdivided curve
- * @param right the cubic curve object for storing for the right or
- * second half of the subdivided curve
- */
- public void subdivide(CubicCurve2D left, CubicCurve2D right) {
- subdivide(this, left, right);
- }
-
- /**
- * Subdivides the cubic curve specified by the <code>src</code> parameter
- * and stores the resulting two subdivided curves into the
- * <code>left</code> and <code>right</code> curve parameters.
- * Either or both of the <code>left</code> and <code>right</code> objects
- * may be the same as the <code>src</code> object or <code>null</code>.
- * @param src the cubic curve to be subdivided
- * @param left the cubic curve object for storing the left or
- * first half of the subdivided curve
- * @param right the cubic curve object for storing the right or
- * second half of the subdivided curve
- */
- public static void subdivide(CubicCurve2D src,
- CubicCurve2D left,
- CubicCurve2D right) {
- double x1 = src.getX1();
- double y1 = src.getY1();
- double ctrlx1 = src.getCtrlX1();
- double ctrly1 = src.getCtrlY1();
- double ctrlx2 = src.getCtrlX2();
- double ctrly2 = src.getCtrlY2();
- double x2 = src.getX2();
- double y2 = src.getY2();
- double centerx = (ctrlx1 + ctrlx2) / 2.0;
- double centery = (ctrly1 + ctrly2) / 2.0;
- ctrlx1 = (x1 + ctrlx1) / 2.0;
- ctrly1 = (y1 + ctrly1) / 2.0;
- ctrlx2 = (x2 + ctrlx2) / 2.0;
- ctrly2 = (y2 + ctrly2) / 2.0;
- double ctrlx12 = (ctrlx1 + centerx) / 2.0;
- double ctrly12 = (ctrly1 + centery) / 2.0;
- double ctrlx21 = (ctrlx2 + centerx) / 2.0;
- double ctrly21 = (ctrly2 + centery) / 2.0;
- centerx = (ctrlx12 + ctrlx21) / 2.0;
- centery = (ctrly12 + ctrly21) / 2.0;
- if (left != null) {
- left.setCurve(x1, y1, ctrlx1, ctrly1,
- ctrlx12, ctrly12, centerx, centery);
- }
- if (right != null) {
- right.setCurve(centerx, centery, ctrlx21, ctrly21,
- ctrlx2, ctrly2, x2, y2);
- }
- }
-
- /**
- * Subdivides the cubic curve specified by the coordinates
- * stored in the <code>src</code> array at indices <code>srcoff</code>
- * through (<code>srcoff</code> + 7) and stores the
- * resulting two subdivided curves into the two result arrays at the
- * corresponding indices.
- * Either or both of the <code>left</code> and <code>right</code>
- * arrays may be <code>null</code> or a reference to the same array
- * as the <code>src</code> array.
- * Note that the last point in the first subdivided curve is the
- * same as the first point in the second subdivided curve. Thus,
- * it is possible to pass the same array for <code>left</code>
- * and <code>right</code> and to use offsets, such as <code>rightoff</code>
- * equals (<code>leftoff</code> + 6), in order
- * to avoid allocating extra storage for this common point.
- * @param src the array holding the coordinates for the source curve
- * @param srcoff the offset into the array of the beginning of the
- * the 6 source coordinates
- * @param left the array for storing the coordinates for the first
- * half of the subdivided curve
- * @param leftoff the offset into the array of the beginning of the
- * the 6 left coordinates
- * @param right the array for storing the coordinates for the second
- * half of the subdivided curve
- * @param rightoff the offset into the array of the beginning of the
- * the 6 right coordinates
- */
- public static void subdivide(double src[], int srcoff,
- double left[], int leftoff,
- double right[], int rightoff) {
- double x1 = src[srcoff + 0];
- double y1 = src[srcoff + 1];
- double ctrlx1 = src[srcoff + 2];
- double ctrly1 = src[srcoff + 3];
- double ctrlx2 = src[srcoff + 4];
- double ctrly2 = src[srcoff + 5];
- double x2 = src[srcoff + 6];
- double y2 = src[srcoff + 7];
- if (left != null) {
- left[leftoff + 0] = x1;
- left[leftoff + 1] = y1;
- }
- if (right != null) {
- right[rightoff + 6] = x2;
- right[rightoff + 7] = y2;
- }
- x1 = (x1 + ctrlx1) / 2.0;
- y1 = (y1 + ctrly1) / 2.0;
- x2 = (x2 + ctrlx2) / 2.0;
- y2 = (y2 + ctrly2) / 2.0;
- double centerx = (ctrlx1 + ctrlx2) / 2.0;
- double centery = (ctrly1 + ctrly2) / 2.0;
- ctrlx1 = (x1 + centerx) / 2.0;
- ctrly1 = (y1 + centery) / 2.0;
- ctrlx2 = (x2 + centerx) / 2.0;
- ctrly2 = (y2 + centery) / 2.0;
- centerx = (ctrlx1 + ctrlx2) / 2.0;
- centery = (ctrly1 + ctrly2) / 2.0;
- if (left != null) {
- left[leftoff + 2] = x1;
- left[leftoff + 3] = y1;
- left[leftoff + 4] = ctrlx1;
- left[leftoff + 5] = ctrly1;
- left[leftoff + 6] = centerx;
- left[leftoff + 7] = centery;
- }
- if (right != null) {
- right[rightoff + 0] = centerx;
- right[rightoff + 1] = centery;
- right[rightoff + 2] = ctrlx2;
- right[rightoff + 3] = ctrly2;
- right[rightoff + 4] = x2;
- right[rightoff + 5] = y2;
- }
- }
-
- /**
- * Solves the cubic whose coefficients are in the <code>eqn</code>
- * array and places the non-complex roots back into the same array,
- * returning the number of roots. The solved cubic is represented
- * by the equation:
- * <pre>
- * eqn = {c, b, a, d}
- * dx^3 + ax^2 + bx + c = 0
- * </pre>
- * A return value of -1 is used to distinguish a constant equation
- * that might be always 0 or never 0 from an equation that has no
- * zeroes.
- * @param eqn an array containing coefficients for a cubic
- * @return the number of roots, or -1 if the equation is a constant.
- */
- public static int solveCubic(double eqn[]) {
- return solveCubic(eqn, eqn);
- }
-
- /**
- * Solve the cubic whose coefficients are in the <code>eqn</code>
- * array and place the non-complex roots into the <code>res</code>
- * array, returning the number of roots.
- * The cubic solved is represented by the equation:
- * eqn = {c, b, a, d}
- * dx^3 + ax^2 + bx + c = 0
- * A return value of -1 is used to distinguish a constant equation,
- * which may be always 0 or never 0, from an equation which has no
- * zeroes.
- * @param eqn the specified array of coefficients to use to solve
- * the cubic equation
- * @param res the array that contains the non-complex roots
- * resulting from the solution of the cubic equation
- * @return the number of roots, or -1 if the equation is a constant
- */
- public static int solveCubic(double eqn[], double res[]) {
- // From Numerical Recipes, 5.6, Quadratic and Cubic Equations
- double d = eqn[3];
- if (d == 0.0) {
- // The cubic has degenerated to quadratic (or line or ...).
- return QuadCurve2D.solveQuadratic(eqn, res);
- }
- double a = eqn[2] / d;
- double b = eqn[1] / d;
- double c = eqn[0] / d;
- int roots = 0;
- double Q = (a * a - 3.0 * b) / 9.0;
- double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0;
- double R2 = R * R;
- double Q3 = Q * Q * Q;
- a = a / 3.0;
- if (R2 < Q3) {
- double theta = Math.acos(R / Math.sqrt(Q3));
- Q = -2.0 * Math.sqrt(Q);
- if (res == eqn) {
- // Copy the eqn so that we don't clobber it with the
- // roots. This is needed so that fixRoots can do its
- // work with the original equation.
- eqn = new double[4];
- System.arraycopy(res, 0, eqn, 0, 4);
- }
- res[roots++] = Q * Math.cos(theta / 3.0) - a;
- res[roots++] = Q * Math.cos((theta + Math.PI * 2.0)/ 3.0) - a;
- res[roots++] = Q * Math.cos((theta - Math.PI * 2.0)/ 3.0) - a;
- fixRoots(res, eqn);
- } else {
- boolean neg = (R < 0.0);
- double S = Math.sqrt(R2 - Q3);
- if (neg) {
- R = -R;
- }
- double A = Math.pow(R + S, 1.0 / 3.0);
- if (!neg) {
- A = -A;
- }
- double B = (A == 0.0) ? 0.0 : (Q / A);
- res[roots++] = (A + B) - a;
- }
- return roots;
- }
-
- /*
- * This pruning step is necessary since solveCubic uses the
- * cosine function to calculate the roots when there are 3
- * of them. Since the cosine method can have an error of
- * +/- 1E-14 we need to make sure that we don't make any
- * bad decisions due to an error.
- *
- * If the root is not near one of the endpoints, then we will
- * only have a slight inaccuracy in calculating the x intercept
- * which will only cause a slightly wrong answer for some
- * points very close to the curve. While the results in that
- * case are not as accurate as they could be, they are not
- * disastrously inaccurate either.
- *
- * On the other hand, if the error happens near one end of
- * the curve, then our processing to reject values outside
- * of the t=[0,1] range will fail and the results of that
- * failure will be disastrous since for an entire horizontal
- * range of test points, we will either overcount or undercount
- * the crossings and get a wrong answer for all of them, even
- * when they are clearly and obviously inside or outside the
- * curve.
- *
- * To work around this problem, we try a couple of Newton-Raphson
- * iterations to see if the true root is closer to the endpoint
- * or further away. If it is further away, then we can stop
- * since we know we are on the right side of the endpoint. If
- * we change direction, then either we are now being dragged away
- * from the endpoint in which case the first condition will cause
- * us to stop, or we have passed the endpoint and are headed back.
- * In the second case, we simply evaluate the slope at the
- * endpoint itself and place ourselves on the appropriate side
- * of it or on it depending on that result.
- */
- private static void fixRoots(double res[], double eqn[]) {
- final double EPSILON = 1E-5;
- for (int i = 0; i < 3; i++) {
- double t = res[i];
- if (Math.abs(t) < EPSILON) {
- res[i] = findZero(t, 0, eqn);
- } else if (Math.abs(t - 1) < EPSILON) {
- res[i] = findZero(t, 1, eqn);
- }
- }
- }
-
- private static double solveEqn(double eqn[], int order, double t) {
- double v = eqn[order];
- while (--order >= 0) {
- v = v * t + eqn[order];
- }
- return v;
- }
-
- private static double findZero(double t, double target, double eqn[]) {
- double slopeqn[] = {eqn[1], 2*eqn[2], 3*eqn[3]};
- double slope;
- double origdelta = 0;
- double origt = t;
- while (true) {
- slope = solveEqn(slopeqn, 2, t);
- if (slope == 0) {
- // At a local minima - must return
- return t;
- }
- double y = solveEqn(eqn, 3, t);
- if (y == 0) {
- // Found it! - return it
- return t;
- }
- // assert(slope != 0 && y != 0);
- double delta = - (y / slope);
- // assert(delta != 0);
- if (origdelta == 0) {
- origdelta = delta;
- }
- if (t < target) {
- if (delta < 0) return t;
- } else if (t > target) {
- if (delta > 0) return t;
- } else { /* t == target */
- return (delta > 0
- ? (target + java.lang.Double.MIN_VALUE)
- : (target - java.lang.Double.MIN_VALUE));
- }
- double newt = t + delta;
- if (t == newt) {
- // The deltas are so small that we aren't moving...
- return t;
- }
- if (delta * origdelta < 0) {
- // We have reversed our path.
- int tag = (origt < t
- ? getTag(target, origt, t)
- : getTag(target, t, origt));
- if (tag != INSIDE) {
- // Local minima found away from target - return the middle
- return (origt + t) / 2;
- }
- // Local minima somewhere near target - move to target
- // and let the slope determine the resulting t.
- t = target;
- } else {
- t = newt;
- }
- }
- }
-
- /**
- * Tests if a specified coordinate is inside the boundary of the shape.
- * @param x, y the specified coordinate to be tested
- * @return <code>true</code> if the coordinate is inside the boundary of
- * the shape; <code>false</code> otherwise.
- */
- public boolean contains(double x, double y) {
- // We count the "Y" crossings to determine if the point is
- // inside the curve bounded by its closing line.
- int crossings = 0;
- double x1 = getX1();
- double y1 = getY1();
- double x2 = getX2();
- double y2 = getY2();
- // First check for a crossing of the line connecting the endpoints
- double dy = y2 - y1;
- if ((dy > 0.0 && y >= y1 && y <= y2) ||
- (dy < 0.0 && y <= y1 && y >= y2))
- {
- if (x < x1 + (y - y1) * (x2 - x1) / dy) {
- crossings++;
- }
- }
- // Solve the Y parametric equation for intersections with y
- double ctrlx1 = getCtrlX1();
- double ctrly1 = getCtrlY1();
- double ctrlx2 = getCtrlX2();
- double ctrly2 = getCtrlY2();
- boolean include0 = ((y2 - y1) * (ctrly1 - y1) >= 0);
- boolean include1 = ((y1 - y2) * (ctrly2 - y2) >= 0);
- double eqn[] = new double[4];
- double res[] = new double[4];
- fillEqn(eqn, y, y1, ctrly1, ctrly2, y2);
- int roots = solveCubic(eqn, res);
- roots = evalCubic(res, roots,
- include0, include1, eqn,
- x1, ctrlx1, ctrlx2, x2);
- while (--roots >= 0) {
- if (x < res[roots]) {
- crossings++;
- }
- }
- return ((crossings & 1) == 1);
- }
-
- /**
- * Tests if a specified <code>Point2D</code> is inside the boundary of
- * the shape.
- * @param p the specified <code>Point2D</code> to be tested
- * @return <code>true</code> if the <code>p</code> is inside the boundary
- * of the shape; <code>false</code> otherwise.
- */
- public boolean contains(Point2D p) {
- return contains(p.getX(), p.getY());
- }
-
- /*
- * Fill an array with the coefficients of the parametric equation
- * in t, ready for solving against val with solveCubic.
- * We currently have:
- * val = P(t) = C1(1-t)^3 + 3CP1 t(1-t)^2 + 3CP2 t^2(1-t) + C2 t^3
- * = C1 - 3C1t + 3C1t^2 - C1t^3 +
- * 3CP1t - 6CP1t^2 + 3CP1t^3 +
- * 3CP2t^2 - 3CP2t^3 +
- * C2t^3
- * 0 = (C1 - val) +
- * (3CP1 - 3C1) t +
- * (3C1 - 6CP1 + 3CP2) t^2 +
- * (C2 - 3CP2 + 3CP1 - C1) t^3
- * 0 = C + Bt + At^2 + Dt^3
- * C = C1 - val
- * B = 3*CP1 - 3*C1
- * A = 3*CP2 - 6*CP1 + 3*C1
- * D = C2 - 3*CP2 + 3*CP1 - C1
- * @param x, y the coordinates of the upper left corner of the specified
- * rectangular shape
- * @param w the width of the specified rectangular shape
- * @param h the height of the specified rectangular shape
- * @return <code>true</code> if the shape intersects the interior of the
- * the specified set of rectangular coordinates;
- * <code>false</code> otherwise.
- */
- private static void fillEqn(double eqn[], double val,
- double c1, double cp1, double cp2, double c2) {
- eqn[0] = c1 - val;
- eqn[1] = (cp1 - c1) * 3.0;
- eqn[2] = (cp2 - cp1 - cp1 + c1) * 3.0;
- eqn[3] = c2 + (cp1 - cp2) * 3.0 - c1;
- return;
- }
-
- /*
- * Evaluate the t values in the first num slots of the vals[] array
- * and place the evaluated values back into the same array. Only
- * evaluate t values that are within the range <0, 1>, including
- * the 0 and 1 ends of the range iff the include0 or include1
- * booleans are true. If an "inflection" equation is handed in,
- * then any points which represent a point of inflection for that
- * cubic equation are also ignored.
- */
- private static int evalCubic(double vals[], int num,
- boolean include0,
- boolean include1,
- double inflect[],
- double c1, double cp1,
- double cp2, double c2) {
- int j = 0;
- for (int i = 0; i < num; i++) {
- double t = vals[i];
- if ((include0 ? t >= 0 : t > 0) &&
- (include1 ? t <= 1 : t < 1) &&
- (inflect == null ||
- inflect[1] + (2*inflect[2] + 3*inflect[3]*t)*t != 0))
- {
- double u = 1 - t;
- vals[j++] = c1*u*u*u + 3*cp1*t*u*u + 3*cp2*t*t*u + c2*t*t*t;
- }
- }
- return j;
- }
-
- private static final int BELOW = -2;
- private static final int LOWEDGE = -1;
- private static final int INSIDE = 0;
- private static final int HIGHEDGE = 1;
- private static final int ABOVE = 2;
-
- /*
- * Determine where coord lies with respect to the range from
- * low to high. It is assumed that low <= high. The return
- * value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE,
- * or ABOVE.
- */
- private static int getTag(double coord, double low, double high) {
- if (coord <= low) {
- return (coord < low ? BELOW : LOWEDGE);
- }
- if (coord >= high) {
- return (coord > high ? ABOVE : HIGHEDGE);
- }
- return INSIDE;
- }
-
- /*
- * Determine if the pttag represents a coordinate that is already
- * in its test range, or is on the border with either of the two
- * opttags representing another coordinate that is "towards the
- * inside" of that test range. In other words, are either of the
- * two "opt" points "drawing the pt inward"?
- */
- private static boolean inwards(int pttag, int opt1tag, int opt2tag) {
- switch (pttag) {
- case BELOW:
- case ABOVE:
- default:
- return false;
- case LOWEDGE:
- return (opt1tag >= INSIDE || opt2tag >= INSIDE);
- case INSIDE:
- return true;
- case HIGHEDGE:
- return (opt1tag <= INSIDE || opt2tag <= INSIDE);
- }
- }
-
- /**
- * Tests if the shape intersects the interior of a specified
- * set of rectangular coordinates.
- * @param x, y the coordinates of the upper left corner
- * of the specified rectangular area
- * @param w the width of the specified rectangular area
- * @param h the height of the specified rectangular area
- * @return <code>true</code> if the shape intersects the
- * interior of the specified rectangular area;
- * <code>false</code> otherwise.
- */
- public boolean intersects(double x, double y, double w, double h) {
- // Trivially reject non-existant rectangles
- if (w < 0 || h < 0) {
- return false;
- }
-
- // Trivially accept if either endpoint is inside the rectangle
- // (not on its border since it may end there and not go inside)
- // Record where they lie with respect to the rectangle.
- // -1 => left, 0 => inside, 1 => right
- double x1 = getX1();
- double y1 = getY1();
- int x1tag = getTag(x1, x, x+w);
- int y1tag = getTag(y1, y, y+h);
- if (x1tag == INSIDE && y1tag == INSIDE) {
- return true;
- }
- double x2 = getX2();
- double y2 = getY2();
- int x2tag = getTag(x2, x, x+w);
- int y2tag = getTag(y2, y, y+h);
- if (x2tag == INSIDE && y2tag == INSIDE) {
- return true;
- }
-
- double ctrlx1 = getCtrlX1();
- double ctrly1 = getCtrlY1();
- double ctrlx2 = getCtrlX2();
- double ctrly2 = getCtrlY2();
- int ctrlx1tag = getTag(ctrlx1, x, x+w);
- int ctrly1tag = getTag(ctrly1, y, y+h);
- int ctrlx2tag = getTag(ctrlx2, x, x+w);
- int ctrly2tag = getTag(ctrly2, y, y+h);
-
- // Trivially reject if all points are entirely to one side of
- // the rectangle.
- if (x1tag < INSIDE && x2tag < INSIDE &&
- ctrlx1tag < INSIDE && ctrlx2tag < INSIDE)
- {
- return false; // All points left
- }
- if (y1tag < INSIDE && y2tag < INSIDE &&
- ctrly1tag < INSIDE && ctrly2tag < INSIDE)
- {
- return false; // All points above
- }
- if (x1tag > INSIDE && x2tag > INSIDE &&
- ctrlx1tag > INSIDE && ctrlx2tag > INSIDE)
- {
- return false; // All points right
- }
- if (y1tag > INSIDE && y2tag > INSIDE &&
- ctrly1tag > INSIDE && ctrly2tag > INSIDE)
- {
- return false; // All points below
- }
-
- // Test for endpoints on the edge where either the segment
- // or the curve is headed "inwards" from them
- // Note: These tests are a superset of the fast endpoint tests
- // above and thus repeat those tests, but take more time
- // and cover more cases
- if (inwards(x1tag, x2tag, ctrlx1tag) &&
- inwards(y1tag, y2tag, ctrly1tag))
- {
- // First endpoint on border with either edge moving inside
- return true;
- }
- if (inwards(x2tag, x1tag, ctrlx2tag) &&
- inwards(y2tag, y1tag, ctrly2tag))
- {
- // Second endpoint on border with either edge moving inside
- return true;
- }
-
- // Trivially accept if endpoints span directly across the rectangle
- boolean xoverlap = (x1tag * x2tag <= 0);
- boolean yoverlap = (y1tag * y2tag <= 0);
- if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) {
- return true;
- }
- if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) {
- return true;
- }
-
- // We now know that both endpoints are outside the rectangle
- // but the 4 points are not all on one side of the rectangle.
- // Therefore the curve cannot be contained inside the rectangle,
- // but the rectangle might be contained inside the curve, or
- // the curve might intersect the boundary of the rectangle.
-
- double[] eqn = new double[4];
- double[] res = new double[4];
- if (!yoverlap) {
- // Both y coordinates for the closing segment are above or
- // below the rectangle which means that we can only intersect
- // if the curve crosses the top (or bottom) of the rectangle
- // in more than one place and if those crossing locations
- // span the horizontal range of the rectangle.
- fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly1, ctrly2, y2);
- int num = solveCubic(eqn, res);
- num = evalCubic(res, num, true, true, null,
- x1, ctrlx1, ctrlx2, x2);
- // odd counts imply the crossing was out of [0,1] bounds
- // otherwise there is no way for that part of the curve to
- // "return" to meet its endpoint
- return (num == 2 &&
- getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0);
- }
-
- // Y ranges overlap. Now we examine the X ranges
- if (!xoverlap) {
- // Both x coordinates for the closing segment are left of
- // or right of the rectangle which means that we can only
- // intersect if the curve crosses the left (or right) edge
- // of the rectangle in more than one place and if those
- // crossing locations span the vertical range of the rectangle.
- fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx1, ctrlx2, x2);
- int num = solveCubic(eqn, res);
- num = evalCubic(res, num, true, true, null,
- y1, ctrly1, ctrly2, y2);
- // odd counts imply the crossing was out of [0,1] bounds
- // otherwise there is no way for that part of the curve to
- // "return" to meet its endpoint
- return (num == 2 &&
- getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0);
- }
-
- // The X and Y ranges of the endpoints overlap the X and Y
- // ranges of the rectangle, now find out how the endpoint
- // line segment intersects the Y range of the rectangle
- double dx = x2 - x1;
- double dy = y2 - y1;
- double k = y2 * x1 - x2 * y1;
- int c1tag, c2tag;
- if (y1tag == INSIDE) {
- c1tag = x1tag;
- } else {
- c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w);
- }
- if (y2tag == INSIDE) {
- c2tag = x2tag;
- } else {
- c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w);
- }
- // If the part of the line segment that intersects the Y range
- // of the rectangle crosses it horizontally - trivially accept
- if (c1tag * c2tag <= 0) {
- return true;
- }
-
- // Now we know that both the X and Y ranges intersect and that
- // the endpoint line segment does not directly cross the rectangle.
- //
- // We can almost treat this case like one of the cases above
- // where both endpoints are to one side, except that we may
- // get one or three intersections of the curve with the vertical
- // side of the rectangle. This is because the endpoint segment
- // accounts for the other intersection in an even pairing. Thus,
- // with the endpoint crossing we end up with 2 or 4 total crossings.
- //
- // (Remember there is overlap in both the X and Y ranges which
- // means that the segment itself must cross at least one vertical
- // edge of the rectangle - in particular, the "near vertical side"
- // - leaving an odd number of intersections for the curve.)
- //
- // Now we calculate the y tags of all the intersections on the
- // "near vertical side" of the rectangle. We will have one with
- // the endpoint segment, and one or three with the curve. If
- // any pair of those vertical intersections overlap the Y range
- // of the rectangle, we have an intersection. Otherwise, we don't.
-
- // c1tag = vertical intersection class of the endpoint segment
- //
- // Choose the y tag of the endpoint that was not on the same
- // side of the rectangle as the subsegment calculated above.
- // Note that we can "steal" the existing Y tag of that endpoint
- // since it will be provably the same as the vertical intersection.
- c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag);
-
- // Now we have to calculate an array of solutions of the curve
- // with the "near vertical side" of the rectangle. Then we
- // need to sort the tags and do a pairwise range test to see
- // if either of the pairs of crossings spans the Y range of
- // the rectangle.
- //
- // Note that the c2tag can still tell us which vertical edge
- // to test against.
- fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx1, ctrlx2, x2);
- int num = solveCubic(eqn, res);
- num = evalCubic(res, num, true, true, null, y1, ctrly1, ctrly2, y2);
-
- // Now put all of the tags into a bucket and sort them. There
- // is an intersection iff one of the pairs of tags "spans" the
- // Y range of the rectangle.
- int tags[] = new int[num+1];
- for (int i = 0; i < num; i++) {
- tags[i] = getTag(res[i], y, y+h);
- }
- tags[num] = c1tag;
- Arrays.sort(tags);
- return ((num >= 1 && tags[0] * tags[1] <= 0) ||
- (num >= 3 && tags[2] * tags[3] <= 0));
- }
-
- /**
- * Tests if the shape intersects the interior of a specified
- * <code>Rectangle2D</code>.
- * @param r the specified <code>Rectangle2D</code> to be tested
- * @return <code>true</code> if the shape intersects the interior of
- * the specified <code>Rectangle2D</code>
- * <code>false</code> otherwise.
- */
- public boolean intersects(Rectangle2D r) {
- return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Tests if the interior of the shape entirely contains the specified
- * set of rectangular coordinates.
- * @param x, y the coordinates of the upper left corner of the specified
- * rectangular shape
- * @param w the width of the specified rectangular shape
- * @param h the height of the specified rectangular shape
- * @return <code>true</code> if the shape entirely contains
- * the specified set of rectangular coordinates;
- * <code>false</code> otherwise.
- */
- public boolean contains(double x, double y, double w, double h) {
- // Assertion: Cubic curves closed by connecting their
- // endpoints form either one or two convex halves with
- // the closing line segment as an edge of both sides.
- if (!(contains(x, y) &&
- contains(x + w, y) &&
- contains(x + w, y + h) &&
- contains(x, y + h))) {
- return false;
- }
- // Either the rectangle is entirely inside one of the convex
- // halves or it crosses from one to the other, in which case
- // it must intersect the closing line segment.
- Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
- return !rect.intersectsLine(getX1(), getY1(), getX2(), getY2());
- }
-
- /**
- * Tests if the interior of the shape entirely contains the specified
- * <code>Rectangle2D</code>.
- * @param r the specified <code>Rectangle2D</code> to be tested
- * @return <code>true</code> if the shape entirely contains
- * the specified <code>Rectangle2D</code>
- * <code>false</code> otherwise.
- */
- public boolean contains(Rectangle2D r) {
- return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Returns the bounding box of the shape.
- * @return a {@link Rectangle} that is the bounding box of the shape.
- */
- public Rectangle getBounds() {
- return getBounds2D().getBounds();
- }
-
- /**
- * Returns an iteration object that defines the boundary of the
- * shape.
- * The iterator for this class is not multi-threaded safe,
- * which means that this <code>CubicCurve2D</code> class does not
- * guarantee that modifications to the geometry of this
- * <code>CubicCurve2D</code> object do not affect any iterations of
- * that geometry that are already in process.
- * @param at an optional <code>AffineTransform</code> to be applied to the
- * coordinates as they are returned in the iteration, or <code>null</code>
- * if untransformed coordinates are desired
- * @return the <code>PathIterator</code> object that returns the
- * geometry of the outline of this <code>CubicCurve2D</code>, one
- * segment at a time.
- */
- public PathIterator getPathIterator(AffineTransform at) {
- return new CubicIterator(this, at);
- }
-
- /**
- * Return an iteration object that defines the boundary of the
- * flattened shape.
- * The iterator for this class is not multi-threaded safe,
- * which means that this <code>CubicCurve2D</code> class does not
- * guarantee that modifications to the geometry of this
- * <code>CubicCurve2D</code> object do not affect any iterations of
- * that geometry that are already in process.
- * @param at an optional <code>AffineTransform</code> to be applied to the
- * coordinates as they are returned in the iteration, or <code>null</code>
- * if untransformed coordinates are desired
- * @param flatness the maximum amount that the control points
- * for a given curve can vary from colinear before a subdivided
- * curve is replaced by a straight line connecting the endpoints
- * @return the <code>PathIterator</code> object that returns the
- * geometry of the outline of this <code>CubicCurve2D</code>, one segment at a time.
- */
- public PathIterator getPathIterator(AffineTransform at, double flatness) {
- return new FlatteningPathIterator(getPathIterator(at), flatness);
- }
-
- /**
- * Creates a new object of the same class as this object.
- *
- * @return a clone of this instance.
- * @exception OutOfMemoryError if there is not enough memory.
- * @see java.lang.Cloneable
- * @since 1.2
- */
- public Object clone() {
- try {
- return super.clone();
- } catch (CloneNotSupportedException e) {
- // this shouldn't happen, since we are Cloneable
- throw new InternalError();
- }
- }
- }